6,079
Views
43
CrossRef citations to date
0
Altmetric
Review

A review of microfluidic concepts and applications for atmospheric aerosol science

ORCID Icon, ORCID Icon & ORCID Icon
Pages 310-329 | Received 27 Oct 2017, Accepted 10 Nov 2017, Published online: 27 Dec 2017

References

  • Abate, A. R., and Weitz, D. A. (2009). High-Order Multiple Emulsions Formed in Poly(Dimethylsiloxane) Microfluidics. Small, 5(18):2030–2032. doi:10.1002/smll.200900569.
  • Abdelgawad, M., and Wheeler, A. R. (2009). The Digital Revolution: A New Paradigm for Microfluidics. Adv. Mater., 21(8):920–925. doi:10.1002/adma.200802244.
  • Agresti, J. J., Antipov, E., Abate, A. R., Ahn, K., Rowat, A. C., Baret, J. C., Márquez, M., Klibanov, A. M., Griffiths, A. D., and Weitz, D. A. (2010). Ultrahigh-Throughput Screening in Drop-Based Microfluidics for Directed Evolution. Proc. Natl. Acad. Sci. U. S. A., 107(9):4004–4009. doi:10.1073/pnas.0910781107.
  • Ahn, K., Kerbage, C., Hunt, T. P., Westervelt, R. M., Link, D. R., and Weitz, D. A. (2006). Dielectrophoretic Manipulation of Drops for High-Speed Microfluidic Sorting Devices. Appl. Phys. Lett., 88:024104. doi:10.1063/1.2164911.
  • Alvarez, N. J., Vogus, D. R., Walker, L. M., and Anna, S. L. (2012). Using Bulk Convection in a Microtensiometer to Approach Kinetic-Limited Surfactant Dynamics at Fluid–Fluid Interfaces. J. Colloid Interface Sci., 372(1):183–191. doi:10.1016/j.jcis.2011.12.034.
  • Amstad, E., Gopinadhan, M., Holtze, C., Osuji, C. O., Brenner, M. P., Spaepen, F., and Weitz, D. A. (2015). Production of Amorphous Nanoparticles by Supersonic Spray-Drying with a Microfluidic Nebulator. Science, 349(6251):956–960. doi:10.1126/science.aac9582.
  • Amstad, E., Spaepen, F., Brenner, M., and Weitz, D. A. (2017). The Microfluidic Nebulator: Production of Sub-Micrometer Sized Airborne Drops. Lab Chip, 453(8):253–1480. doi:10.1039/c6lc01455k.
  • Anna, S. L. (2016). Droplets and Bubbles in Microfluidic Devices. Annu. Rev. Fluid Mech., 48(1):285–309. doi:10.1146/annurev-fluid-122414-034425.
  • Anna, S. L., Bontoux, N., and Stone, H. A. (2003). Formation of Dispersions Using “Flow Focusing” in Microchannels. Appl. Phys. Lett., 82(3):364. doi:10.1063/1.1537519.
  • Applegate, R. W., Squier, J., Vestad, T., Oakey, J., and Marr, D. W. M. (2004). Optical Trapping, Manipulation, and Sorting of Cells and Colloids in Microfluidic Systems with Diode Laser Bars. Opt. Express, 12(19):4390–4398. doi:10.1364/OPEX.12.004390.
  • Aref, H. (1990). Chaotic Advection of Fluid Particles. Philos. Trans. R. Soc., A, 333(1631):273–288. doi:10.1098/rsta.1990.0161.
  • Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E., and Chu, S. (1986). Observation of a Single-Beam Gradient Force Optical Trap for Dielectric Particles. Opt. Lett., 11(5):288. doi:10.1364/OL.11.000288.
  • Baldelli, A., Power, R. M., Miles, R. E. H., Reid, J. P., and Vehring, R. (2016). Effect of Crystallization Kinetics on the Properties of Spray Dried Microparticles. Aerosol Sci. Technol., 50(7):693–704. doi:10.1080/02786826.2016.1177163.
  • Barca, F., Caporossi, T., and Rizzo, S. (2014). Silicone Oil: Different Physical Proprieties and Clinical Applications. BioMed Res. Int., 2014(5):1–7. doi:10.1155/2014/502143.
  • Baroud, C. N., Robert de Saint Vincent, M., and Delville, J.-P. (2007). An Optical Toolbox for Total Control of Droplet Microfluidics. Lab Chip, 7(8):1029–5. doi:10.1039/b702472j.
  • Bateman, A. P., Nizkorodov, S. A., Laskin, J., and Laskin, A. (2010). High-Resolution Electrospray Ionization Mass Spectrometry Analysis of Water-Soluble Organic Aerosols Collected with a Particle Into Liquid Sampler. Anal. Chem., 82(19):8010–8016. doi:10.1021/ac1014386.
  • Baustian, K. J., Cziczo, D. J., Wise, M. E., Pratt, K. A., Kulkarni, G., Hallar, A. G., and Tolbert, M. A. (2012). Importance of Aerosol Composition, Mixing State, and Morphology for Heterogeneous Ice Nucleation: a Combined Field and Laboratory Approach. J. Geophys. Res., 117:D06217. doi:10.1029/2011JD016784.
  • Berglund, R. N., and Liu, B. Y. H. (1973). Generation of Monodisperse Aerosol Standards. Environ. Sci. Technol., 7(2):147–153.
  • Berry, J. D., Neeson, M. J., Dagastine, R. R., Chan, D. Y. C., and Tabor, R. F. (2015). Measurement of Surface and Interfacial Tension Using Pendant Drop Tensiometry. J. Colloid Interface Sci., 454:226–237. doi:10.1016/j.jcis.2015.05.012.
  • Bertram, A. K., Ivanov, A. V., Hunter, M., Molina, L. T., and Molina, M. J. (2001). The Reaction Probability of OH on Organic Surfaces of Tropospheric Interest. J. Phys. Chem. A, 105(41):9415–9421. doi:10.1021/jp0114034.
  • Bian, X., Lan, Y., Wang, B., Zhang, Y. S., Liu, B., Yang, P., Zhang, W., and Qiao, L. (2016). Microfluidic Air Sampler for Highly Efficient Bacterial Aerosol Collection and Identification. Anal. Chem., 88(23):11504–11512. doi:10.1021/acs.analchem.6b02708.
  • Bong, K. W., Chapin, S. C., Pregibon, D. C., Baah, D., Floyd-Smith, T. M., and Doyle, P. S. (2011). Compressed-Air Flow Control System. Lab Chip, 11(4):743–747. doi:10.1039/c0lc00303d.
  • Boyer, H. C., and Dutcher, C. S. (2017). Atmospheric Aqueous Aerosol Surface Tensions: Isotherm-Based Modeling and Biphasic Microfluidic Measurements. J. Phys. Chem. A, 121(25):4733–4742. doi:10.1021/acs.jpca.7b03189.
  • Brody, J. P., and Yager, P. (1997). Diffusion-Based Extraction in a Microfabricated Device. Sens. Actuators A Phys., 58(1):13–18. doi:10.1016/S0924-4247(97)80219-1.
  • Brody, J. P., Osborn, T. D., Forster, F. K., and Yager, P. (1996). A Planar Microfabricated Fluid Filter. Sens. Actuators, A Phys., 54(1–3):704–708. doi:10.1016/S0924-4247(97)80042-8.
  • Bruus, H. (2011). Theoretical Microfluidics. Oxford University Press, New York. doi:10.1002/3527601953.ch8/summary.
  • Bzdek, B. R., Power, R. M., Simpson, S. H., Reid, J. P., and Royall, C. P. (2016). Precise, Contactless Measurements of the Surface Tension of Picolitre Aerosol Droplets. Chem. Sci., 7(1):274–285. doi:10.1039/C5SC03184B.
  • Cartas-Ayala, M. A., Raafat, M., and Karnik, R. (2012). Self-Sorting of Deformable Particles in an Asynchronous Logic Microfluidic Circuit. Small, 9(3):375–381. doi:10.1002/smll.201201422.
  • Chen, B. T., Cheng, Y. S., and Yeh, H. C. (2007). Performance of a TSI Aerodynamic Particle Sizer. Aerosol Sci. Technol., 4(1):89–97. doi:10.1080/02786828508959041.
  • Chen, D. R., Pui, D. Y. H., Hummes, D., Fissan, H., Quant, F. R., and Sem, G. J. (1998). Design and Evaluation of a Nanometer Aerosol Differential Mobility Analyzer (Nano-DMA). J. Aerosol Sci., 29(5,6):497–509. doi:10.1016/S0021-8502(97)10018-0.
  • Choban, E. R., Markoski, L. J., Wieckowski, A., and Kenis, P. J. A. (2004). Microfluidic Fuel Cell Based on Laminar Flow. J. Power Sources, 128(1):54–60. doi:10.1016/j.jpowsour.2003.11.052.
  • Christopher, G. F., and Anna, S. L. (2007). Microfluidic Methods for Generating Continuous Droplet Streams. J. Phys. D: Appl. Phys., 40(19):R319–R336. doi:10.1088/0022-3727/40/19/R01.
  • Christopher, G. F., Noharuddin, N. N., Taylor, J. A., and Anna, S. L. (2008). Experimental Observations of the Squeezing-to-Dripping Transition in T-Shaped Microfluidic Junctions. Phys. Rev. E, 78(3):036317. doi:10.1103/PhysRevE.78.036317.
  • Chu, L.-Y., Kim, J.-W., Shah, R. K., and Weitz, D. A. (2007a). Monodisperse Thermoresponsive Microgels with Tunable Volume-Phase Transition Kinetics. Adv. Funct. Mater., 17(17):3499–3504. doi:10.1002/adfm.200700379.
  • Chu, L.-Y., Utada, A. S., Shah, R. K., Kim, J.-W., and Weitz, D. A. (2007b). Controllable Monodisperse Multiple Emulsions. Angew. Chem., Int. Ed., 46(47):8970–8974. doi:10.1002/anie.200701358.
  • Cloupeau, M., and Prunet-Foch, B. (1994). Electrohydrodynamic Spraying Functioning Modes: A Critical Review. J. Aerosol Sci., 25(6):1021–1036. doi:10.1016/0021-8502(94)90199-6.
  • Cocker, D. R., Flagan, R. C., and Seinfeld, J. H. (2001). State-of-the-Art Chamber Facility for Studying Atmospheric Aerosol Chemistry. Environ. Sci. Technol., 35(12):2594–2601. doi:10.1021/es0019169.
  • Colberg, C. A., Krieger, U. K., and Peter, T. (2004). Morphological Investigations of Single Levitated H2SO4/NH3/H2O Aerosol Particles During Deliquescence/Efflorescence Experiments. J. Phys. Chem. A, 108(14):2700–2709. doi:10.1021/jp037628r.
  • Cross, E. S., Slowik, J. G., Davidovits, P., Allan, J. D., Worsnop, D. R., Jayne, J. T., Lewis, D. K., Canagaratna, M. R., and Onasch, T. B. (2007). Laboratory and Ambient Particle Density Determinations Using Light Scattering in Conjunction with Aerosol Mass Spectrometry. Aerosol Sci. Technol., 41(4):343–359. doi:10.1080/02786820701199736.
  • Damit, B. (2017). Droplet-Based Microfluidics Detector for Bioaerosol Detection. Aerosol Sci. Technol., 51(4):488–500. doi:10.1080/02786826.2016.1275515.
  • Davies, J. F., Haddrell, A. E., and Reid, J. P. (2012). Time-Resolved Measurements of the Evaporation of Volatile Components From Single Aerosol Droplets. Aerosol Sci. Technol., 46(6):666–677. doi:10.1080/02786826.2011.652750.
  • Davies, J. F., Miles, R. E. H., Haddrell, A. E., and Reid, J. P. (2013). Influence of Organic Films on the Evaporation and Condensation of Water in Aerosol. Proc. Natl. Acad. Sci. U. S. A., 110(22):8807–8812. doi:10.1073/pnas.1305277110.
  • Davies, J. T., and Rideal, E. K. (1963). Interfacial Phenomena. Second Edition. Academic Press, New York.
  • Davis, E. J. (1997). A History of Single Aerosol Particle Levitation. Aerosol Sci. Technol., 26(3):212–254. doi:10.1080/02786829708965426.
  • Davis, E. J., Buehler, M. F., and Ward, T. L. (1990). The Double-Ring Electrodynamic Balance for Microparticle Characterization. Rev. Sci. Instrum., 61(4):1281–1288. doi:10.1063/1.1141227.
  • Dendukuri, D., Gu, S. S., Pregibon, D. C., Hatton, T. A., and Doyle, P. S. (2007). Stop-Flow Lithography in a Microfluidic Device. Lab Chip, 7(7):818. doi:10.1039/b703457a.
  • Dendukuri, D., Tsoi, K., Hatton, T. A., and Doyle, P. S. (2005). Controlled Synthesis of Nonspherical Microparticles Using Microfluidics. Langmuir, 21(6):2113–2116. doi:10.1021/la047368k.
  • Di Carlo, D., Edd, J. F., Irimia, D., Tompkins, R. G., and Toner, M. (2008). Equilibrium Separation and Filtration of Particles Using Differential Inertial Focusing. Anal. Chem., 80(6):2204–2211. doi:10.1021/ac702283m.
  • Dubinsky, S., Zhang, H., Nie, Z., Gourevich, I., Voicu, D., Deetz, M., and Kumacheva, E. (2008). Microfluidic Synthesis of Macroporous Copolymer Particles. Macromolecules, 41(10):3555–3561. doi:10.1021/ma800300d.
  • Duncanson, W. J., Zieringer, M., Wagner, O., Wilking, J. N., Abbaspourrad, A., Haag, R., and Weitz, D. A. (2012). Microfluidic Synthesis of Monodisperse Porous Microspheres with Size-Tunable Pores. Soft Matter, 8(41):10636–10640. doi:10.1039/C2SM25694K.
  • Dylla-Spears, R., Townsend, J. E., Jen-Jacobson, L., Sohn, L. L., and Muller, S. J. (2010). Single-Molecule Sequence Detection via Microfluidic Planar Extensional Flow at a Stagnation Point. Lab Chip, 10(12):1543–1549. doi:10.1039/B926847B.
  • Ehara, K., Hagwood, C., and Coakley, K. J. (1996). Novel Method to Classify Aerosol Particles According to Their Mass-to-Charge Ratio—Aerosol Particle Mass Analyser. J. Aerosol Sci., 27(2):217–234. doi:10.1016/0021-8502(95)00562-5.
  • Eiguren-Fernandez, A., Lewis, G. S., and Hering, S. V. (2014). Design and Laboratory Evaluation of a Sequential Spot Sampler for Time-Resolved Measurement of Airborne Particle Composition. Aerosol Sci. Technol., 48(6):655–663. doi:10.1080/02786826.2014.911409.
  • Erickson, D., and Li, D. (2004). Integrated Microfluidic Devices. Anal. Chim. Acta, 507(1):11–26. doi:10.1016/j.aca.2003.09.019.
  • Facchini, M. C., Mircea, M., Fuzzi, S., and Charlson, R. J. (1999). Cloud Albedo Enhancement by Surface-Active Organic Solutes in Growing Droplets. Nature, 401(6750):257–259. doi:10.1038/45758.
  • Fair, R. B., Khlystov, A., Srinivasan, V., Pamula, V. K., and Weaver, K. N. (2004). Integrated Chemical/Biochemical Sample Collection, Pre-Concentration, and Analysis on a Digital Microfluidic Lab-on-a-Chip Platform. Edited by Linda A Smith and Daniel Sobek. Proc. SPIE, 5591:113–124. doi:10.1117/12.581955.
  • Fair, R. B., Khlystov, A., Tailor, T. D., Ivanov, V., Evans, R. D., Srinivasan, V., Pamula, V. K., Pollack, M. G., Griffin, P. B., and Zhou, J. (2007). Chemical and Biological Applications of Digital-Microfluidic Devices. IEEE Des. Test Comput., 24(1):10–24. doi:10.1109/MDT.2007.8.
  • Farmer, D. K., Cappa, C. D., and Kreidenweis, S. M. (2015). Atmospheric Processes and Their Controlling Influence on Cloud Condensation Nuclei Activity. Chem. Rev., 115(10):4199–4217. doi:10.1021/cr5006292.
  • Fernández-Nieves, A., Vitelli, V., Utada, A. S., Link, D. R., Márquez, M., Nelson, D. R., and Weitz, D. A. (2007). Novel Defect Structures in Nematic Liquid Crystal Shells. Phys. Rev. Lett., 99(15):157801. doi:10.1103/PhysRevLett.99.157801.
  • Folkers, M., Mentel, T. F., and Wahner, A. (2003). Influence of an Organic Coating on the Reactivity of Aqueous Aerosols Probed by the Heterogeneous Hydrolysis of N2O5. Geophys. Res. Lett., 30(12):1644. doi:10.1029/2003GL017168.
  • Freedman, M. A., Baustian, K. J., Wise, M. E., and Tolbert, M. A. (2010). Characterizing the Morphology of Organic Aerosols at Ambient Temperature and Pressure. Anal. Chem., 82(19):7965–7972. doi:10.1021/ac101437w.
  • Freney, E. J., Adachi, K., and Buseck, P. R. (2010). Internally Mixed Atmospheric Aerosol Particles: Hygroscopic Growth and Light Scattering. J. Geophys. Res., 115(D19):D19210. doi:10.1029/2009JD013558.
  • Gad-el-Hak, M. (1999). The Fluid Mechanics of Microdevices—the Freeman Scholar Lecture. J. Fluids Eng., 121(1):5–33. doi:10.1115/1.2822013.
  • Galindo-Rosales, F. J., Oliveira, M. S. N., and Alves, M. A. (2014). Optimized Cross-Slot Microdevices for Homogeneous Extension. RSC Adv., 4(15):7799–7804. doi:10.1039/C3RA47230B.
  • Garstecki, P., Fuerstman, M. J., Stone, H. A., and Whitesides, G. M. (2006). Formation of Droplets and Bubbles in a Microfluidic T-Junction—Scaling and Mechanism of Break-Up. Lab Chip, 6(3):437–446. doi:10.1039/B510841A.
  • Garstecki, P., Stone, H. A., and Whitesides, G. (2005). Mechanism for Flow-Rate Controlled Breakup in Confined Geometries: a Route to Monodisperse Emulsions. Phys. Rev. Lett., 94(16):164501. doi:10.1103/PhysRevLett.94.164501.
  • George, I. J., and Abbatt, J. P. D. (2010). Heterogeneous Oxidation of Atmospheric Aerosol Particles by Gas-Phase Radicals. Nat. Chem., 2(9):713–722. doi:10.1038/nchem.806.
  • Gérard, V., Nozière, B., Baduel, C., Fine, L., Frossard, A. A., and Cohen, R. C. (2016). Anionic, Cationic, and Nonionic Surfactants in Atmospheric Aerosols From the Baltic Coast at Askö, Sweden: Implications for Cloud Droplet Activation. Environ. Sci. Technol., 50(6):2974–2982. doi:10.1021/acs.est.5b05809.
  • Grace, J. M., and Marijnissen, J. C. M. (1994). A Review of Liquid Atomization by Electrical Means. J. Aerosol Sci., 25(6):1005–1019. doi:10.1016/0021-8502(94)90198-8.
  • Gravesen, P., Branebjerg, J., and Jensen, O. S. (1993). Microfluidics-a Review. J. Micromech. Microeng., 3(4):168–182. doi:10.1088/0960-1317/3/4/002.
  • Gupta, R., Hindle, M., Byron, P. R., Cox, K. A., and McRae, D. D. (2003). Investigation of a Novel Condensation Aerosol Generator: Solute and Solvent Effects. Aerosol Sci. Technol., 37(8):672–681. doi:10.1080/02786820300910.
  • Haward, S. J., Oliveira, M. S. N., Alves, M. A., and McKinley, G. H. (2012). Optimized Cross-Slot Flow Geometry for Microfluidic Extensional Rheometry. Phys. Rev. Lett., 109(12):128301. doi:10.1103/PhysRevLett.109.128301.
  • Hayward, R. C., Utada, A. S., Dan, N., and Weitz, D. A. (2006). Dewetting Instability During the Formation of Polymersomes From Block-Copolymer-Stabilized Double Emulsions. Langmuir, 22(10):4457–4461. doi:10.1021/la060094b.
  • Hinds, W. C. (1999). Aerosol Technology. Second Edition. John Wiley & Sons, Inc, New York.
  • Hudson, S. D., Phelan, F. R., Jr., Handler, M. D., Cabral, J. T., Migler, K. B., and Amis, E. J. (2004). Microfluidic Analog of the Four-Roll Mill. Appl. Phys. Lett., 85(2):335–337. doi:10.1063/1.1767594.
  • Islam, M. T., Vanapalli, S. A., and Solomon, M. J. (2004). Inertial Effects on Polymer Chain Scission in Planar Elongational Cross-Slot Flow. Macromolecules, 37(3):1023–1030. doi:10.1021/ma035254u.
  • Jebrail, M. J., Bartsch, M. S., and Patel, K. D. (2012). Digital Microfluidics: a Versatile Tool for Applications in Chemistry, Biology and Medicine. Lab Chip, 12(14):2452–13. doi:10.1039/c2lc40318h.
  • Jebrail, M. J., Yang, H., Mudrik, J. M., Lafreni re, N. M., McRoberts, C., Al-Dirbashi, O. Y., Fisher, L., Chakraborty, P., and Wheeler, A. R. (2011). A Digital Microfluidic Method for Dried Blood Spot Analysis. Lab Chip, 11(19):3218. doi:10.1039/c1lc20524b.
  • Jeon, N., Baskaran, H., Dertinger, S. K. W., Whitesides, G. M., Van De Water, L., and Toner, M. (2002). Neutrophil Chemotaxis in Linear and Complex Gradients of Interleukin-8 Formed in a Microfabricated Device. Nat. Biotechnol., 20(8):826–830. doi:10.1038/nbt712.
  • Jing, W., Jiang, X., Zhao, W., Liu, S., Cheng, X., and Sui, G. (2014). Microfluidic Platform for Direct Capture and Analysis of Airborne Mycobacterium Tuberculosis. Anal. Chem., 86(12):5815–5821. doi:10.1021/ac500578h.
  • Jing, W., Zhao, W., Liu, S., Li, L., Tsai, C.-T., Fan, X., Wu, W., Li, J., Yang, X., and Sui, G. (2013). Microfluidic Device for Efficient Airborne Bacteria Capture and Enrichment. Anal. Chem., 85(10):5255–5262. doi:10.1021/ac400590c.
  • Jones, S. W., Thomas, O. M., and Aref, H. (2006). Chaotic Advection by Laminar Flow in a Twisted Pipe. J. Fluid Mech., 209:335–357. doi:10.1017/S0022112089003137.
  • Karam, P., Dukhin, A., and Pennathur, S. (2017). Optimal MEMS Device for Mobility and Zeta Potential Measurements Using DC Electrophoresis. Electrophoresis., 38:1245–1250. doi:10.1002/elps.201700029.
  • Kawakatsu, T., Trägårdh, G., Trägårdh, C., Nakajima, M., Oda, N., and Yonemoto, T. (2001). The Effect of the Hydrophobicity of Microchannels and Components in Water and Oil Phases on Droplet Formation in Microchannel Water-in-Oil Emulsification. Colloid Surface A, 179(1):29–37. doi:10.1016/S0927-7757(00)00498-2.
  • Kenis, P. J. A., Ismagilov, R. F., and Whitesides, G. M. (1999). Microfabrication Inside Capillaries Using Multiphase Laminar Flow Patterning. Science, 285(5424):83–85. doi:10.1126/science.285.5424.83.
  • Kim, J.-W., Utada, A. S., Fernández-Nieves, A., Hu, Z., and Weitz, D. A. (2007). Fabrication of Monodisperse Gel Shells and Functional Microgels in Microfluidic Devices. Angew. Chem., 119(11):1851–1854. doi:10.1002/ange.200604206.
  • Kirby, A. E., and Wheeler, A. R. (2013). Digital Microfluidics: an Emerging Sample Preparation Platform for Mass Spectrometry. Anal. Chem., 85(13):6178–6184. doi:10.1021/ac401150q.
  • Knutson, E. O., and Whitby, K. T. (1975). Aerosol Classification by Electric Mobility: Apparatus, Theory, and Applications. J. Aerosol Sci., 6(6):443–451. doi:10.1016/0021-8502(75)90060-9.
  • Kobayashi, I., Nakajima, M., Tong, J., Kawakatsu, T., Nabetani, H., Kikuchi, Y., Shohno, A., and Satho, K. (1999). Production and Characterization of Monodispersed Oil-in-Water Microspheres Using Microchannels. Food Sci. Technol. Res., 5(4):350–355. doi:10.3136/fstr.5.350.
  • Köhler, H. (1936). The Nucleus in and the Growth of Hygroscopic Droplets. Trans. Faraday Soc., 32(0):1152–1161. doi:10.1039/TF9363201152.
  • Kramer, A. J., Rattanavaraha, W., Zhang, Z., Gold, A., Surratt, J. D., and Lin, Y.-H. (2016). Assessing the Oxidative Potential of Isoprene-Derived Epoxides and Secondary Organic Aerosol. Atmos. Environ., 130:211–218. doi:10.1016/j.atmosenv.2015.10.018.
  • Kulkarni, P., Baron, P. A., and Willeke, K., eds. (2011). Aerosol Measurement. Third Edition. John Wiley & Sons, Inc.
  • Kwamena, N. O. A., Buajarern, J., and Reid, J. P. (2010). Equilibrium Morphology of Mixed Organic/Inorganic/Aqueous Aerosol Droplets: Investigating the Effect of Relative Humidity and Surfactants. J. Phys. Chem. A, 114(18):5787–5795. doi:10.1021/jp1003648.
  • Lee, D., Fang, C., Ravan, A. S., Fuller, G. G., and Shen, A. Q. (2017). Temperature Controlled Tensiometry Using Droplet Microfluidics. Lab Chip, 17(4):717–726. doi:10.1039/C6LC01384H.
  • Lee, J. S., Dylla-Spears, R., Teclemariam, N. P., and Muller, S. J. (2007). Microfluidic Four-Roll Mill for All Flow Types. Appl. Phys. Lett., 90(7):074103. doi:10.1063/1.2472528.
  • Lee, S., Park, J., Im, H., and Jung, H.-I. (2008). A Microfluidic ATP-Bioluminescence Sensor for the Detection of Airborne Microbes. Sens. Actuat. B-Chem., 132(2):443–448. doi:10.1016/j.snb.2007.10.035.
  • Li, C.-W., Chen, R., and Yang, M. (2007). Generation of Linear and Non-Linear Concentration Gradients Along Microfluidic Channel by Microtunnel Controlled Stepwise Addition of Sample Solution. Lab Chip, 7(10):1371–1373. doi:10.1039/b705525k.
  • Li, Z., Schwier, A. N., Sareen, N., and McNeill, V. F. (2011). Reactive Processing of Formaldehyde and Acetaldehyde in Aqueous Aerosol Mimics: Surface Tension Depression and Secondary Organic Products. Atmos. Chem. Phys., 11(22):11617–11629. doi:10.5194/acp-11-11617-2011.
  • Lin, Y.-H., Zhang, Z., Docherty, K. S., Zhang, H., Budisulistiorini, S. H., Rubitschun, C. L., Shaw, S. L., Knipping, E. M., Edgerton, E. S., Kleindienst, T. E., Gold, A., and Surratt, J. D. (2012). Isoprene Epoxydiols as Precursors to Secondary Organic Aerosol Formation: Acid-Catalyzed Reactive Uptake Studies with Authentic Compounds. Environ. Sci. Technol., 46(1):250–258. doi:10.1021/es202554c.
  • Liu, B. Y. H., and Lee, K. W. (1975). An Aerosol Generator of High Stability. Am. Ind. Hyg. Assoc. J., 36(12):861–865. doi:10.1080/0002889758507357.
  • Liu, B. Y. H., and Pui, D. Y. H. (1975). On the Performance of the Electrical Aerosol Analyzer. J. Aerosol Sci., 6(3–4):249–254. doi:10.1016/0021-8502(75)90093-2.
  • Liu, B. Y. H., Romay, F. J., Dick, W. D., Woo, K.-S., and Chiruta, M. (2010). A Wide-Range Particle Spectrometer for Aerosol Measurement From 0.010 Μm to 10 Μm. Aerosol Air Qual. Res., 10(2):125–139. doi:10.4209/aaqr.2009.10.0062.
  • Liu, P., Ziemann, P. J., Kittelson, D. B., and McMurry, P. H. (1995). Generating Particle Beams of Controlled Dimensions and Divergence: II. Experimental Evaluation of Particle Motion in Aerodynamic Lenses and Nozzle Expansions. Aerosol Sci. Technol., 22(3):314–324. doi:10.1080/02786829408959749.
  • Liu, R. H., Stremler, M. A., Sharp, K. V., Olsen, M. G., Santiago, J. G., Adrian, R. J., Aref, H., and Beebe, D. J. (2000). Passive Mixing in a Three-Dimensional Serpentine Microchannel. J. Microelectromech. Syst., 9(2):190–197. doi:10.1109/84.846699.
  • Lutz, B. R., Chen, J., and Schwartz, D. T. (2006). Hydrodynamic Tweezers: 1. Noncontact Trapping of Single Cells Using Steady Streaming Microeddies. Anal. Chem., 78(15):5429–5435. doi:10.1021/ac060555y.
  • Maenaka, H., Yamada, M., Yasuda, M., and Seki, M. (2008). Continuous and Size-Dependent Sorting of Emulsion Droplets Using Hydrodynamics in Pinched Microchannels. Langmuir, 24(8):4405–4410. doi:10.1021/la703581j.
  • Mazutis, L., Gilbert, J., Ung, W. L., Weitz, D. A., Griffiths, A. D., and Heyman, J. A. (2013). Single-Cell Analysis and Sorting Using Droplet-Based Microfluidics. Nat Protoc, 8(5):870–891. doi:10.1038/nprot.2013.046.
  • McNeill, V. F., Patterson, J., Wolfe, G. M., and Thornton, J. A. (2006). The Effect of Varying Levels of Surfactant on the Reactive Uptake of N2O5 To Aqueous Aerosol. Atmos. Chem. Phys., 6(6):1635–1644. doi:10.5194/acp-6-1635-2006.
  • Metcalf, A. R., Boyer, H. C., and Dutcher, C. S. (2016). Interfacial Tensions of Aged Organic Aerosol Particle Mimics Using a Biphasic Microfluidic Platform. Environ. Sci. Technol., 50(3):1251–1259. doi:10.1021/acs.est.5b04880.
  • Mio, C., Gong, T., Terray, A., and Marr, D. W. M. (2000). Design of a Scanning Laser Optical Trap for Multiparticle Manipulation. Rev. Sci. Instrum., 71(5):2196–2200. doi:10.1063/1.1150605.
  • Mitchem, L., and Reid, J. P. (2008). Optical Manipulation and Characterisation of Aerosol Particles Using a Single-Beam Gradient Force Optical Trap. Chem. Soc. Rev., 37(4):756. doi:10.1039/b609713h.
  • Moon, H.-S., Nam, Y.-W., Park, J. C., and Jung, H.-I. (2009). Dielectrophoretic Separation of Airborne Microbes and Dust Particles Using a Microfluidic Channel for Real-Time Bioaerosol Monitoring. Environ. Sci. Technol., 43(15):5857–5863. doi:10.1021/es900078z.
  • Morel, M., Galas, J.-C., Dahan, M., and Studer, V. (2012). Concentration Landscape Generators for Shear Free Dynamic Chemical Stimulation. Lab Chip, 12(7):1340–1346. doi:10.1039/C2LC20994B.
  • Nisisako, T., Torii, T., Takahashi, T., and Takizawa, Y. (2006). Synthesis of Monodisperse Bicolored Janus Particles with Electrical Anisotropy Using a Microfluidic Co-Flow System. Adv. Mater., 18(9):1152–1156. doi:10.1002/adma.200502431.
  • Novosselov, I. V., Gorder, R. A., Van Amberg, J. A., and Ariessohn, P. C. (2014). Design and Performance of a Low-Cost Micro-Channel Aerosol Collector. Aerosol Sci. Technol., 48(8):822–830. doi:10.1080/02786826.2014.932895.
  • Nozière, B. (2016). CLOUDS. Don't Forget the Surface. Science, 351(6280):1396–1397. doi:10.1126/science.aaf3253.
  • Okushima, S., Nisisako, T., Torii, T., and Higuchi, T. (2004). Controlled Production of Monodisperse Double Emulsions by Two-Step Droplet Breakup in Microfluidic Devices. Langmuir, 20(23):9905–9908. doi:10.1021/la0480336.
  • Olfert, J. S., Reavell, K. S., Rushton, M. G., and Collings, N. (2006). The Experimental Transfer Function of the Couette Centrifugal Particle Mass Analyzer. J. Aerosol Sci., 37(12):1840–1852. doi:10.1016/j.jaerosci.2006.07.007.
  • Paprotny, I., Doering, F., Solomon, P. A., White, R. M., and Gundel, L. A. (2013). Microfabricated Air-Microfluidic Sensor for Personal Monitoring of Airborne Particulate Matter: Design, Fabrication, and Experimental Results. Sens. Actuators A Phys., 201:506–516. doi:10.1016/j.sna.2012.12.026.
  • Pathak, J. A., and Hudson, S. D. (2006). Rheo-Optics of Equilibrium Polymer Solutions: Wormlike Micelles in Elongational Flow in a Microfluidic Cross-Slot. Macromolecules, 39(25):8782–8792. doi:10.1021/ma061355r.
  • Petters, S. S., and Petters, M. D. (2016). Surfactant Effect on Cloud Condensation Nuclei for Two-Component Internally Mixed Aerosols. J. Geophys. Res., 121(4):1878–1895. doi:10.1002/2015JD024090.
  • Phelan, F. R., Jr, Hudson, S. D., and Handler, M. D. (2005). Fluid Dynamics Analysis of Channel Flow Geometries for Materials Characterization in Microfluidic Devices. Rheol. Acta., 45:59–71. doi:10.1007/s00397-005-0449-0.
  • Pilát, Z., Ježek, J., Kaňka, J., and Zemánek, P. (2014). Raman Tweezers in Microfluidic Systems for Analysis and Sorting of Living Cells. Edited by Daniel L Farkas, Dan V Nicolau, and Robert C Leif. Proc. SPIE, 8947:89471M. doi:10.1117/12.2040631.
  • Pope, F. D., Dennis-Smither, B. J., Griffiths, P. T., Clegg, S. L., and Cox, R. A. (2010). Studies of Single Aerosol Particles Containing Malonic Acid, Glutaric Acid, and Their Mixtures with Sodium Chloride. I. Hygroscopic Growth. J. Phys. Chem. A, 114(16):5335–5341. doi:10.1021/jp100059k.
  • Pöhlker, C., Wiedemann, K. T., Sinha, B., Shiraiwa, M., Gunthe, S. S., Smith, M., Su, H., Artaxo, P., Chen, Q., Cheng, Y., Elbert, W., Gilles, M. K., Kilcoyne, A. L. D., Moffet, R. C., Weigand, M., Martin, S. T., Pöschl, U., and Andreae, M. O. (2012). Biogenic Potassium Salt Particles as Seeds for Secondary Organic Aerosol in the Amazon. Science, 337(6098):1075–1078. doi:10.1126/science.1223264.
  • Prather, K. A., Bertram, T. H., Grassian, V. H., Deane, G. B., Stokes, M. D., DeMott, P. J., Aluwihare, L. I., Palenik, B. P., Azam, F., Seinfeld, J. H., Moffet, R. C., Molina, M. J., Cappa, C. D., Geiger, F. M., Roberts, G. C., Russell, L. M., Ault, A. P., Baltrusaitis, J., Collins, D. B., Corrigan, C. E., Cuadra-Rodriguez, L. A., Ebben, C. J., Forestieri, S. D., Guasco, T. L., Hersey, S. P., Kim, M. J., Lambert, W. F., Modini, R. L., Mui, W., Pedler, B. E., Ruppel, M. J., Ryder, O. S., Schoepp, N. G., Sullivan, R. C., and Zhao, D. (2013). Bringing the Ocean Into the Laboratory to Probe the Chemical Complexity of Sea Spray Aerosol. Proc. Natl. Acad. Sci. U. S. A., 110(19):7550–7555. doi:10.1073/pnas.1300262110.
  • Pruppacher, H. R., and Klett, J. D. (2004). Microphysics of Clouds and Precipitation. 2nd ed. Kluwer Academic Publishers, New York.
  • Purcell, E. M. (1977). Life at Low Reynolds Number. Am. J. Phys., 45(1):3–11. doi:10.1119/1.10903.
  • Quevedo, E., Steinbacher, J., and McQuade, D. T. (2005). Interfacial Polymerization Within a Simplified Microfluidic Device: Capturing Capsules. J. Am. Chem. Soc., 127(30):10498–10499. doi:10.1021/ja0529945.
  • Rahman, N., Ibrahim, F., and Yafouz, B. (2017). Dielectrophoresis for Biomedical Sciences Applications: a Review. Sensors, 17(3):449–27. doi:10.3390/s17030449.
  • Reicher, N., Segev, L., and Rudich, Y. (2017). The WeIzmann Supercooled Droplets Observation (WISDOM) on a Microarray and Application for Ambient Dust. Atmos. Meas. Tech. Discuss., [in review]. doi:10.5194/amt-2017-172.
  • Reid, J. P., Dennis-Smither, B. J., Kwamena, N.-O. A., Miles, R. E. H., Hanford, K. L., and Homer, C. J. (2011). The Morphology of Aerosol Particles Consisting of Hydrophobic and Hydrophilic Phases: Hydrocarbons, Alcohols and Fatty Acids as the Hydrophobic Component. Phys. Chem. Chem. Phys., 13(34):15559–15572. doi:10.1039/c1cp21510h.
  • Riechers, B., Wittbracht, F., Huetten, A., and Koop, T. (2013). The Homogeneous Ice Nucleation Rate of Water Droplets Produced in a Microfluidic Device and the Role of Temperature Uncertainty. Phys. Chem. Chem. Phys., 15(16):5873–5887. doi:10.1039/c3cp42437e.
  • Ruehl, C. R., Davies, J. F., and Wilson, K. R. (2016). An Interfacial Mechanism for Cloud Droplet Formation on Organic Aerosols. Science, 351(6280):1447–1450. doi:10.1126/science.aad4889.
  • Saarnio, K., Teinila, K., Saarikoski, S., Carbone, S., Gilardoni, S., Timonen, H., Aurela, M., and Hillamo, R. (2013). Online Determination of Levoglucosan in Ambient Aerosols with Particle-Into-Liquid Sampler &Ndash; High-Performance Anion-Exchange Chromatography &Ndash; Mass Spectrometry (PILS–HPAEC–MS). Atmos. Meas. Tech., 6(10):2839–2849. doi:10.5194/amt-6-2839-2013.
  • Sackmann, E. K., Fulton, A. L., and Beebe, D. J. (2014). The Present and Future Role of Microfluidics in Biomedical Research. Nature, 507(7491):181–189. doi:10.1038/nature13118.
  • Sareen, N., Schwier, A. N., Shapiro, E. L., Mitroo, D., and McNeill, V. F. (2010). Secondary Organic Material Formed by Methylglyoxal in Aqueous Aerosol Mimics. Atmos. Chem. Phys., 10(3):997–1016. doi:10.5194/acp-10-997-2010.
  • Schwier, A. N., Mitroo, D., and McNeill, V. F. (2012). Surface Tension Depression by Low-Solubility Organic Material in Aqueous Aerosol Mimics. Atmos. Environ., 54(0):490–495. doi:10.1016/j.atmosenv.2012.02.032.
  • Schwier, A. N., Sareen, N., Mitroo, D., Shapiro, E. L., and McNeill, V. F. (2010). Glyoxal-Methylglyoxal Cross-Reactions in Secondary Organic Aerosol Formation. Environ. Sci. Technol., 44(16):6174–6182. doi:10.1021/es101225q.
  • Schwier, A. N., Viglione, G. A., Li, Z., and Faye McNeill, V. (2013). Modeling the Surface Tension of Complex, Reactive Organic–Inorganic Mixtures. Atmos. Chem. Phys., 13(21):10721–10732. doi:10.5194/acp-13-10721-2013.
  • Seinfeld, J. H., and Pandis, S. N. (2016). Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. 3rd ed. John Wiley & Sons, Inc, New York.
  • Seo, M., Paquet, C., Nie, Z., Xu, S., and Kumacheva, E. (2007). Microfluidic Consecutive Flow-Focusing Droplet Generators. Soft Matter, 3(8):986–987. doi:10.1039/b700687j.
  • Shah, R. K., Shum, H. C., Rowat, A. C., Lee, D., Agresti, J. J., Utada, A. S., Chu, L.-Y., Kim, J.-W., Fernández-Nieves, A., Martinez, C. J., and Weitz, D. A. (2008). Designer Emulsions Using Microfluidics. Mater. Today, 11(4):18–27. doi:10.1016/S1369-7021(08)70053-1.
  • Shamloo, A., and Amirifar, L. (2016). A Microfluidic Device for 2D to 3D and 3D to 3D Cell Navigation. J. Micromech. Microeng., 26(1). doi:10.1088/0960-1317/26/1/015003.
  • Shapiro, E. L., Szprengiel, J., Sareen, N., Jen, C. N., Giordano, M. R., and McNeill, V. F. (2009). Light-Absorbing Secondary Organic Material Formed by Glyoxal in Aqueous Aerosol Mimics. Atmos. Chem. Phys., 9(7):2289–2300. doi:10.5194/acp-9-2289-2009.
  • Shenoy, A., Rao, C. V., and Schroeder, C. M. (2016). Stokes Trap for Multiplexed Particle Manipulation and Assembly Using Fluidics. Proc. Natl. Acad. Sci. U. S. A., 113(15):3976–3981. doi:10.1073/pnas.1525162113.
  • Shields, C. W., IV, Reyes, C. D., and López, G. P. (2015). Microfluidic Cell Sorting: a Review of the Advances in the Separation of Cells From Debulking to Rare Cell Isolation. Lab Chip, 15(5):1230–1249. doi:10.1039/C4LC01246A.
  • Shih, S. C. C., Yang, H., Jebrail, M. J., Fobel, R., McIntosh, N., Al-Dirbashi, O. Y., Chakraborty, P., and Wheeler, A. R. (2012). Dried Blood Spot Analysis by Digital Microfluidics Coupled to Nanoelectrospray Ionization Mass Spectrometry. Anal. Chem., 84(8):3731–3738. doi:10.1021/ac300305s.
  • Shulman, M. L., Jacobson, M. C., Carlson, R. J., Synovec, R. E., and Young, T. E. (1996). Dissolution Behavior and Surface Tension Effects of Organic Compounds in Nucleating Cloud Droplets. Geophys. Res. Lett., 23(3):277–280. doi:10.1029/95GL03810.
  • Song, H., Chen, D. L., and Ismagilov, R. F. (2006). Reactions in Droplets in Microfluidic Channels. Angew. Chem., Int. Ed., 45(44):7336–7356. doi:10.1002/anie.200601554.
  • Song, H., Tice, J. D., and Ismagilov, R. F. (2003). A Microfluidic System for Controlling Reaction Networks in Time. Angew. Chem., 115(7):792–796. doi:10.1002/ange.200390172.
  • Song, M., Marcolli, C., Krieger, U. K., Lienhard, D. M., and Peter, T. (2013). Morphologies of Mixed Organic/Inorganic/Aqueous Aerosol Droplets. Faraday Discuss., 165:289–316. doi:10.1039/c3fd00049d.
  • Sorooshian, A., Brechtel, F. J., Ma, Y., Weber, R. J., Corless, A., Flagan, R. C., and Seinfeld, J. H. (2006). Modeling and Characterization of a Particle-Into-Liquid Sampler (PILS). Aerosol Sci. Technol., 40(6):396–409. doi:10.1080/02786820600632282.
  • Squires, T. M., and Quake, S. R. (2005). Microfluidics: Fluid Physics at the Nanoliter Scale. Rev. Mod. Phys., 77(3):977–1026. doi:10.1103/RevModPhys.77.977.
  • Stan, C. A., Schneider, G. F., Shevkoplyas, S. S., Hashimoto, M., Ibanescu, M., Wiley, B. J., and Whitesides, G. M. (2009). A Microfluidic Apparatus for the Study of Ice Nucleation in Supercooled Water Drops. Lab Chip, 9(16):2293–2305. doi:10.1039/B906198C.
  • Steinbacher, J. L., and McQuade, D. T. (2006). Polymer Chemistry in Flow: New Polymers, Beads, Capsules, and Fibers. J. Polym. Sci. A Polym. Chem., 44(22):6505–6533. doi:10.1002/pola.21630.
  • Steiner, B., Berge, B., Rühl, E., Rohmann, J., and Gausmann, R. (1999). Fast In Situ Sizing Technique for Single Levitated Liquid Aerosols. Appl. Opt., 38(9):1523–1529. doi:10.1364/AO.38.001523.
  • Stone, H. A., Stroock, A. D., and Ajdari, A. (2004). Engineering Flows in Small Devices: Microfluidics Toward a Lab-on-a-Chip. Annu. Rev. Fluid Mech., 36(1):381–411. doi:10.1146/annurev.fluid.36.050802.122124.
  • Sugiura, S., Nakajima, M., and Seki, M. (2002). Preparation of Monodispersed Polymeric Microspheres Over 50 Μm Employing Microchannel Emulsification. Ind. Eng. Chem. Res., 41(16):4043–4047. doi:10.1021/ie0201415.
  • Sugiura, S., Nakajima, M., Itou, H., and Seki, M. (2001a). Synthesis of Polymeric Microspheres with Narrow Size Distributions Employing Microchannel Emulsification. Macromol. Rapid Commun., 22(10):773–778. doi:10.1002/1521-3927(20010701)22:10<773::AID-MARC773>3.0.CO;2-H.
  • Sugiura, S., Nakajima, M., Iwamoto, S., and Seki, M. (2001b). Interfacial Tension Driven Monodispersed Droplet Formation From Microfabricated Channel Array. Langmuir, 17(18):5562–5566. doi:10.1021/la010342y.
  • Sullivan, A. P., Weber, R. J., Clements, A. L., Turner, J. R., Bae, M. S., and Schauer, J. J. (2004). A Method for on-Line Measurement of Water-Soluble Organic Carbon in Ambient Aerosol Particles: Results From an Urban Site. Geophys. Res. Lett., 31(13):L13105. doi:10.1029/2004GL019681.
  • Takayama, S., Ostuni, E., LeDuc, P., Naruse, K., Ingber, D. E., and Whitesides, G. M. (2001). Subcellular Positioning of Small Molecules. Nature, 411(6841):1016–1016. doi:10.1038/35082637.
  • Takeuchi, S., Garstecki, P., Weibel, D. B., and Whitesides, G. M. (2005). An Axisymmetric Flow‐Focusing Microfluidic Device. Adv. Mater., 17(8):1067–1072. doi:10.1002/adma.200401738.
  • Tanyeri, M., and Schroeder, C. M. (2013). Manipulation and Confinement of Single Particles Using Fluid Flow. Nano Lett., 13(6):2357–2364. doi:10.1021/nl4008437.
  • Tanyeri, M., Ranka, M., Sittipolkul, N., and Schroeder, C. M. (2011). A Microfluidic-Based Hydrodynamic Trap: Design and Implementation. Lab Chip, 11(10):1786–1794. doi:10.1039/c0lc00709a.
  • Taylor, G. I. (1934). The Formation of Emulsions in Definable Fields of Flow. Proc. R. Soc. London, Ser. A, 146(858):501–523. doi:10.1098/rspa.1934.0169.
  • Thiele, J., Windbergs, M., Abate, A. R., Trebbin, M., Shum, H. C., Förster, S., and Weitz, D. A. (2011). Early Development Drug Formulation on a Chip: Fabrication of Nanoparticles Using a Microfluidic Spray Dryer. Lab Chip, 11(14):2362. doi:10.1039/c1lc20298g.
  • Tice, J. D., Song, H., Lyon, A. D., and Ismagilov, R. F. (2003). Formation of Droplets and Mixing in Multiphase Microfluidics at Low Values of the Reynolds and the Capillary Numbers. Langmuir, 19(22):9127–9133. doi:10.1021/la030090w.
  • Ting, T. H., Yap, Y. F., Nguyen, N.-T., Wong, T. N., Chai, J. C. K., and Yobas, L. (2006). Thermally Mediated Breakup of Drops in Microchannels. Appl. Phys. Lett., 89(23):234101. doi:10.1063/1.2400200.
  • Toh, A. G. G., Wang, Z. P., Yang, C., and Nguyen, N.-T. (2014). Engineering Microfluidic Concentration Gradient Generators for Biological Applications. Microfluid Nanofluid, 16(1,2):1–18. doi:10.1007/s10404-013-1236-3.
  • Torza, S., and Mason, S. G. (1970). Three-Phase Interactions in Shear and Electrical Fields. J. Colloid Interface Sci., 33(1):67–83. doi:10.1016/0021-9797(70)90073-1.
  • Trinh, E. H. (1985). Compact Acoustic Levitation Device for Studies in Fluid Dynamics and Material Science in the Laboratory and Microgravity. Rev. Sci. Instrum., 56(11):2059–2065. doi:10.1063/1.1138419.
  • Tsai, C.-J., and Pui, D. Y. H. (1990). Numerical Study of Particle Deposition in Bends of a Circular Cross-Section-Laminar Flow Regime. Aerosol Sci. Technol., 12(4):813–831. doi:10.1080/02786829008959395.
  • Ulmke, H., Wriedt, T., and Bauckhage, K. (2001). Piezoelectric Droplet Generator for the Calibration of Particle-Sizing Instruments. Chem. Eng. Technol., 24(3):265–268. doi:10.1002/1521-4125(200103)24:3<265::AID-CEAT265>3.0.CO;2-4.
  • Unger, M. A., Chou, H.-P., Thorsen, T., Scherer, A., and Quake, S. R. (2000). Monolithic Microfabricated Valves and Pumps by Multilayer Soft Lithography. Science, 288(5463):113–116. doi:10.1126/science.288.5463.113.
  • Utada, A. S., Chu, L.-Y., Fernández-Nieves, A., Link, D. R., Holtze, C., and Weitz, D. A. (2007). Dripping, Jetting, Drops, and Wetting: the Magic of Microfluidics. MRS Bull., 32(09):702–708. doi:10.1557/mrs2007.145.
  • Utada, A. S., Lorenceau, E., Link, D. R., Kaplan, P. D., Stone, H. A., and Weitz, D. A. (2005). Monodisperse Double Emulsions Generated From a Microcapillary Device. Science, 308(5721):537–541. doi:10.1126/science.1109164.
  • Vaughn, B. S., Tracey, P. J., and Trevitt, A. J. (2016). Drop-on-Demand Microdroplet Generation: a Very Stable Platform for Single-Droplet Experimentation. RSC Adv., 6(65):60215–60222. doi:10.1039/C6RA08472A.
  • Virtanen, A., Joutsensaari, J., Koop, T., Kannosto, J., Yli-Pirilä, P., Leskinen, J., Mäkelä, J. M., Holopainen, J. K., Pöschl, U., Kulmala, M., Worsnop, D. R., and Laaksonen, A. (2010). An Amorphous Solid State of Biogenic Secondary Organic Aerosol Particles. Nature, 467(7317):824–827. doi:10.1038/nature09455.
  • Wan, J., Bick, A., Sullivan, M., and Stone, H. A. (2008). Controllable Microfluidic Production of Microbubbles in Water‐in‐Oil Emulsions and the Formation of Porous Microparticles. Adv. Mater., 20(17):3314–3318. doi:10.1002/adma.200800628.
  • Warschat, C., and Riedel, J. (2017). Studying the Field Induced Breakup of Acoustically Levitated Drops. Rev. Sci. Instrum., 88(10):105108. doi:10.1063/1.5004046.
  • Weber, R. J., Orsini, D., Daun, Y., Lee, Y. N., Klotz, P. J., and Brechtel, F. (2001). A Particle-Into-Liquid Collector for Rapid Measurement of Aerosol Bulk Chemical Composition. Aerosol Sci. Technol., 35(3):718–727. doi:10.1080/02786820152546761.
  • Welters, W., and Fokkink, L. (1998). Fast Electrically Switchable Capillary Effects. Langmuir, 14(7):1535–1538. doi:10.1021/la971153b.
  • Whitesides, G. M. (2006). The Origins and the Future of Microfluidics. Nature, 442(7101):368–373. doi:10.1038/nature05058.
  • Xu, S., Nie, Z., Seo, M., Lewis, P., Kumacheva, E., Stone, H. A., Garstecki, P., Weibel, D. B., Gitlin, I., and Whitesides, G. M. (2005). Generation of Monodisperse Particles by Using Microfluidics: Control Over Size, Shape, and Composition. Angew. Chem., Int. Ed., 44(5):724–728. doi:10.1002/anie.200462226.
  • You, Y., Renbaum-Wolff, L., Carreras-Sospedra, M., Hanna, S. J., Hiranuma, N., Kamal, S., Smith, M. L., Zhang, X., Weber, R. J., Shilling, J. E., Dabdub, D., Martin, S. T., and Bertram, A. K. (2012). Images Reveal That Atmospheric Particles Can Undergo Liquid–Liquid Phase Separations. Proc. Natl. Acad. Sci. U. S. A., 109(33):13188–13193. doi:10.1073/pnas.1206414109.
  • Zhang, S.-H., Akutsu, Y., Russell, L. M., Flagan, R. C., and Seinfeld, J. H. (1995). Radial Differential Mobility Analyzer. Aerosol Sci. Technol., 23(3):357–372. doi:10.1080/02786829508965320.
  • Zhang, Y., Xiao, R.-R., Yin, T., Zou, W., Tang, Y., Ding, J., and Yang, J. (2015). Generation of Gradients on a Microfluidic Device: Toward a High-Throughput Investigation of Spermatozoa Chemotaxis. Edited by Chris D Wood. PloS One, 10(11). doi:10.1371/journal.pone.0142555.
  • Zhang, Z., Lin, Y. H., Zhang, H., Surratt, J. D., Ball, L. M., and Gold, A. (2012). Technical Note: Synthesis of Isoprene Atmospheric Oxidation Products: Isomeric Epoxydiols and the Rearrangement Products Cis- And Trans-3-Methyl-3,4-Dihydroxytetrahydrofuran. Atmos. Chem. Phys., 12(18):8529–8535. doi:10.5194/acp-12-8529-2012.
  • Zhao, Y., Chen, G., and Yuan, Q. (2006). Liquid‐Liquid Two‐Phase Flow Patterns in a Rectangular Microchannel. AIChE J., 52(12):4052–4060. doi:10.1002/aic.11029.
  • Zhu, J., and Xuan, X. (2009). Particle Electrophoresis and Dielectrophoresis in Curved Microchannels. J. Colloid Interface Sci., 340(2):285–290. doi:10.1016/j.jcis.2009.08.031.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.