1,645
Views
32
CrossRef citations to date
0
Altmetric
Original Articles

Hydrogen-assisted spark discharge generated metal nanoparticles to prevent oxide formation

, , , , &
Pages 347-358 | Received 03 Oct 2017, Accepted 19 Nov 2017, Published online: 20 Dec 2017

References

  • Blomberg, S., Gustafson, J., Martin, N. M., Messing, M. E., Deppert, K., Liu, Z., Chang, R., Fernandes, V. R., Borg, A., Grönbeck, H., and Lundgren, E. (2013). Generation and Oxidation of Aerosol Deposited PdAg Nanoparticles. Surf. Sci., 616:186–191. doi:10.1016/J.SUSC.2013.06.005.
  • Borra, J.-P. (2006). Nucleation and Aerosol Processing in Atmospheric Pressure Electrical Discharges: Powders Production, Coatings and Filtration. J. Phys. D: Appl. Phys., 39(2):R19–R54. doi:10.1088/0022-3727/39/2/R01.
  • Brennan, D., Hayward, D. O., and Trapnell, B. M. W. (1960). The Calorimetric Determination of the Heats of Adsorption of Oxygen on Evaporated Metal Films. Proc. R. Soc. Lond. A, 256(May):81–105. doi:10.1098/rspa.1960.0094.
  • Byeon, J. H., Park, J. H., and Hwang, J. (2008). Spark Generation of Monometallic and Bimetallic Aerosol Nanoparticles. J. Aerosol Sci., 39(10):888–896. doi:10.1016/j.jaerosci.2008.05.006.
  • Cabrera, N., and Mott, N. F. (2002). Theory of the Oxidation of Metals. Rep. Prog. Phys., 12(1):163–184. doi:10.1088/0034-4885/12/1/308.
  • Deppert, K., Schmidt, F., Krinke, T., Dixkens, J., and Fissan, H. (1996). Electrostatic Precipitator for Homogeneous Deposition of Ultrafine Particles to Create Quantum-Dot Structures. J. Aerosol Sci., 27:S151–S152. doi:10.1016/0021-8502(96)00148-6.
  • Dixkens, J., and Fissan, H. (1999). Development of an Electrostatic Precipitator for Off-Line Particle Analysis. Aerosol Sci. Technol., 30(5):438–453. doi:10.1080/027868299304480.
  • Fan, K., Cao, C., Pan, Y., Lu, D., Yang, D., Feng, Y., Song, L, Liang, M., and Yan, X. (2012). Magnetoferritin Nanoparticles for Targeting and Visualizing Tumour Tissues. Nature Nanotechnol., 7(July):459–464. doi:10.1038/NNANO.2012.90.
  • Fehlner, F. P., and Mott, N. F. (1970). Low-Temperature Oxidation. Oxid. Met., 2(1):59–99. doi:10.1007/BF00603582.
  • Feng, J., Hontañón, E., Blanes, M., Meyer, J., Guo, X., Santos, L., Paltrinieri, L., Ramlawi, N., Smet, L. C. P. M., Nirschl, H., Kruis, F. E., Schmidt-Ott, A., and Biskos, G. (2016a). Scalable and Environmentally Benign Process for Smart Textile Nanofinishing. ACS Appl. Mater. Interf., 8(23):14756–14765. doi:10.1021/acsami.6b03632.
  • Feng, J., Huang, L., Ludvigsson, L., Messing, M. E., Maisser, A., Biskos, G., and Schmidt-Ott, A. (2016b). General Approach to the Evolution of Singlet Nanoparticles from a Rapidly Quenched Point Source. J. Phys. Chem. C, 120(1):621–630. doi:10.1021/acs.jpcc.5b06503.
  • Gupta, A. K., and Gupta, M. (2004). Synthesis and Surface Engineering of Iron Oxide Nanoparticles for Biomedical Applications. Biomaterials, 26:3995–4021. doi:10.1016/j.biomaterials.2004.10.012.
  • Intra, P., and Tippayawong, N. (2008). An Overview of Differential Mobility Analyzers for Size Classification of Nanometer-Sized Aerosol Particles. Songklanakarin J. Sci. Technol., 30(2):243–256.
  • Itina, T. E., and Voloshko, A. (2013). Nanoparticle Formation by Laser Ablation in Air and by Spark Discharges at Atmospheric Pressure. Appl. Phys. B, 113:473–478. doi:10.1007/s00340-013-5490-6.
  • Kala, S., Theissmann, R., Rouenhoff, M., and Kruis, F. E. (2016). Metal-Semiconductor Pair Nanoparticles by a Physical Route Based on Bipolar Mixing. Nanotechnology, 27(12):125604. doi:10.1088/0957-4484/27/12/125604.
  • Karlsson, M. N. A., Deppert, K., Karlsson, L. S., Magnusson, M. H., Malm, J-O., and Srinivasan, N. S. (2005). Compaction of Agglomerates of Aerosol Nanoparticles: A Compilation of Experimental Data. J. Nanopart. Res., 7(1):43–49. doi:10.1007/s11051-004-7218-3.
  • Kim, J.-T., and Chang, J.-S. (2005). Generation of Metal Oxide Aerosol Particles by a Pulsed Spark Discharge Technique. J. Electrost., 63(6–10):911–916. doi:10.1016/j.elstat.2005.03.066.
  • Knutson, E. O., and Whitby, K. T. (1975). Aerosol Classification by Electric Mobility: Apparatus, Theory, and Applications. J. Aerosol Sci., 6(6):443–451. doi:10.1016/0021-8502(75)90060-9.
  • Kohut, A., Ludvigsson, L., Meuller, B. O., Deppert, K., Messing, M. E., Gábor, G., Geretovszky, G., and Geretovszky, Z. (2017). From Plasma to Nanoparticles: Optical and Particle Emission of a Spark Discharge Generator. Nanotechnology. Advance Online Publication, https://doi.org/10.1088/1361-6528/aa8f84
  • Kruis, F. E., Kusters, K. A., Pratsinis, S. E., and Scarlett, B. (1993). A Simple Model for the Evolution of the Characteristics of Aggregate Particles Undergoing Coagulation and Sintering. Aerosol Sci. Technol., 19(4):514–526. doi:10.1080/02786829308959656.
  • Ludvigsson, L., Meuller, B. M., and Messing, M. E. (2015). Investigations of Initial Particle Stages during Spark Discharge. J. Phys. D: Appl. Phys., 48(31):314012. doi:10.1088/0022-3727/48/31/314012.
  • Luidold, S., and Antrekowitsch, H. (2007). Hydrogen as a Reducing Agent: Thermodynamic Possibilities. JOM, 59(10):58–62. doi:10.1007/s11837-007-0133-1.
  • Magnusson, M. H., Deppert, K., Malm, J-O., Bovin, J-O., and Samuelson, L. (1999). Gold Nanoparticles: Production, Reshaping, and Thermal Charging. J. Nanopart. Res., 1:243–251. doi:10.1023/A:1010012802415.
  • Magnusson, M. H., Ohlsson, B. J., Björk, M. T., Dick, K. A., Borgström, M. T., Deppert, K., and Samuelson, L. (2014). Semiconductor Nanostructures Enabled by Aerosol Technology. Front. Phys., 9(3):398–418. doi:10.1007/s11467-013-0405-x.
  • Messing, M. E., Hillerich, K., Johansson, J., Deppert, K., and Dick, K. D. (2009). The Use of Gold for Fabrication of Nanowire Structures. Gold Bull., 42(3):172–181. doi:10.1007/BF03214931.
  • Messing, M. E., Westerström, R., Meuller, B. O., Blomberg, S., Gustafson, J., Andersen, J. N., Lundgren, E., Rijin, R., Balmes, O., Bluhm, H., and Deppert, K. (2010). Generation of Pd Model Catalyst Nanoparticles by Spark Discharge. J. Phys. Chem. C, 114(20):9257–9263. doi:10.1021/jp101390a.
  • Meuller, B. O., Messing, M. E., Engberg, D. L. J., Jansson, A. M., Johansson, L. I. M., Norlén, S. M., Tureson, N., and Deppert, D. (2012). Review of Spark Discharge Generators for Production of Nanoparticle Aerosols. Aerosol Sci. Technol., 46(11):1256–1270. doi:10.1080/02786826.2012.705448.
  • Muntean, A., Wagner, M., Meyer, J., and Seipenbusch, M. (2016). Generation of Copper, Nickel, and CuNi Alloy Nanoparticles by Spark Discharge. J. Nanopart. Res., 18 229. doi:10.1007/s11051-016-3547-2.
  • Nanda, K. K., Maisels, A., and Kruis, F. E. (2008). Surface Tension and Sintering of Free Gold Nanoparticles. J. Phys. Chem. C, 112(35):13488–13491. doi:10.1021/jp803934n.
  • Nanda, K. K., Maisels, A., and Kruis, F. E. (2011). Evolution of Crystallinity of Free Gold Agglomerates and Shape Transformation. RSC Adv., 1(4):568–572. doi:10.1039/C1RA00208B.
  • Noh, S. R., Lee, D., Park, S. J., Kim, D. S., and Choi, M. (2017). High Throughput Nanoparticle Generation Utilizing High-Frequency Spark Discharges via Rapid Spark Plasma Removal. Aerosol Sci. Technol., 51(1):116–122. doi:10.1080/02786826.2016.1239814.
  • Otsuka, K., Murakoshi, S., and Morikawa, A. (1983). Hydrogen Production from Water by Reduced Tin Oxide. Fuel Process. Technol., 7(3):213–223. doi:10.1016/0378-3820(83)90003-6.
  • Pfeiffer, T. V., Feng, J., and Schmidt-Ott, A. (2014). New Developments in Spark Production of Nanoparticles. Adv. Powder Technol., 25(1):56–70. doi:10.1016/j.apt.2013.12.005.
  • Ramsurn, H., and Gupta, R. B. (2013). Hydrogenation by Nanoparticle Catalysts, in New and Future Developments in Catalysis, S. L. Suib, ed., Elsevier, Amsterdam, pp. 347–374. doi:10.1016/B978-0-444-53874-1.00016-0.
  • Reinmann, R., and Akram, M. (1999). Temporal Investigation of a Fast Spark Discharge in Chemically Inert Gases. J. Phys. D: Appl. Phys., 30(7):1125–1134. doi:10.1088/0022-3727/30/7/010.
  • Schmidt-Ott, A. (1988). New Approaches to in Situ Characterization of Ultrafine Agglomerates. J. Aerosol Sci., 19(5):553–563. doi:10.1016/0021-8502(88)90207-8.
  • Seipenbusch, M., Weber, A. P., Schiel, A., and Kasper, G. (2003). Influence of the Gas Atmosphere on Restructuring and Sintering Kinetics of Nickel and Platinum Aerosol Nanoparticle Agglomerates. J. Aerosol Sci, 34(12):1699–1709. doi:10.1016/S0021-8502(03)00355-0.
  • Tabrizi, N. S., Xu, Q., Van Der Pers, N. M., Lafont, U., and Schmidt-Ott, A. (2009). Synthesis of Mixed Metallic Nanoparticles by Spark Discharge. J. Nanopart. Res., 11:1209–1218. doi:10.1007/s11051-008-9568-8.
  • Weber, A. P., and Friedlander, S. K. (1997). In Situ Determination of the Activation Energy for Restructuring of Nanometer Aerosol Agglomerates. J. Aerosol Sci., 28(2):179–192. doi:10.1016/S0021-8502(96)00062-6.
  • Wiedensohler, A. (1988). An Approximation of the Bipolar Charge Distribution for Particles in the Submicron Size Range. J. Aerosol Sci., 19(3):387–389. doi:10.1016/0021-8502(88)90278-9.
  • Vons, V. A., Anastasopol, A., Legerstee, W. J., Mulder, F. M., Eijt, S. W. H., and Schmidt-Ott, A. (2011a). Low-Temperature Hydrogen Desorption and the Structural Properties of Spark Discharge Generated Mg Nanoparticles. Acta Mater., 59(8):3070–3080. doi:10.1016/j.actamat.2011.01.047.
  • Vons, V. A., Smet, L. C. P. M., Munao, D., Evirgen, A., Kelder, E. M., and Schmidt-Ott, A. (2011b). Silicon Nanoparticles Produced by Spark Discharge. J. Nanopart. Res., 13(10):4867–4879. doi:10.1007/s11051-011-0466-0.
  • Yetisen, A. K., Qu, H., Manbachi, A., Butt, H., Dokmeci, M. R., Hinestroza, J. P, Skorobogatiy, M., Khademhosseini, A., and Yun, S. Y. (2016). Nanotechnology in Textiles. ACS Nano., 10(3):3042–3068. doi:10.1021/acsnano.5b08176.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.