3,177
Views
43
CrossRef citations to date
0
Altmetric
Articles

A portable, four-wavelength, single-cell photoacoustic spectrometer for ambient aerosol absorption

& ORCID Icon
Pages 393-406 | Received 11 Sep 2017, Accepted 28 Nov 2017, Published online: 22 Dec 2017

References

  • Ajtai, T., Filep, A., Schnaiter, M., Linke, C., Vragel, M., Bozoki, Z., Szabo, G., and Leisner, T. (2010). A Novel Multi-Wavelength Photoacoustic Spectrometer for the Measurement of the UV-vis-NIR Spectral Absorption Coefficient of Atmospheric Aerosols. J. Aerosol Sci., 41(11):1020–1029. doi:10.1016/j.jaerosci.2010.07.008.
  • Ajtai, T., Filep, A., Utry, N., Schnaiter, M., Linke, C., Bozoki, Z., Szabo, G., and Leisner, T. (2011). Inter-Comparison of Optical Absorption Coefficients of Atmospheric Aerosols Determined by a Multi-Wavelength Photoacoustic Spectrometer and an Aethalometer under Sub-Urban Wintry Conditions. J. Aerosol Sci., 42(12):859–866. doi:10.1016/j.jaerosci.2011.07.008.
  • Allan, D. W. (1966). Statistics of Atomic Frequency Standards. Proc. IEEE, 54(2):221–230. doi:10.1109/PROC.1966.4634.
  • Andreae, M. O. and Gelencser, A. (2006). Black Carbon or Brown Carbon? The Nature of Light-Absorbing Carbonaceous Aerosols. Atmos. Chem. Phys., 6(10):3131–3148. doi:10.5194/acp-6-3131-2006.
  • Arnott, W. P., Rogers, C., Jin, T., and Bruch, R. (1999). Photoacoustic Spectrometer for Measuring Light Absorption by Aerosol: Instrument Description. Atmos. Environ., 33(17):2845–2852. doi:10.1016/S1352-2310(98)00361-6.
  • Arnott, W. P., Walker, J. W., Moosmüller, H., Elleman, R. A., Jonsson, H. H., Buzorius, G., Conant, W. C., Flagan, R. C., and Seinfeld, J. H. (2006). Photoacoustic Insight for Aerosol Light Absorption Aloft from Meteorological Aircraft and Comparison with Particle Soot Absorption Photometer Measurements: DOE Southern Great Plains Climate Research Facility and the Coastal Stratocumulus Imposed Perturbation Experiments. J. Geophys. Res., 111(D5):605. doi:10.1029/2005JD005964.
  • Bell, A. G. (1881). The Production of Sound by Radiant Energy. Science, 2(49):242–253. doi:10.1126/science.os-2.49.242.
  • Berden, G. and Engeln, R. ( Eds.) (2009), Cavity Ring-Down Spectroscopy. Cavity Ring-Down Spectroscopy. John Wiley & Sons Ltd, Chichester, UK.
  • Bluvshtein, N., Flores, J.M., He, Q., Segre, E., Segev, L., Hong, N., Donohue, A., Hilfiker, J.N., and Rudich, Y. (2017). Calibration of a Multi-Pass Photoacoustic Spectrometer Cell Using Light-Absorbing Aerosols. Atmos. Meas. Tech., 10(3):1203–1213. doi:10.5194/amt-10-1203-2017.
  • Bond, T. C. and Bergstrom, R. W. (2006). Light Absorption by Carbonaceous Particles: An Investigative Review. Aerosol Sci. Technol., 40(1):27–67. doi:10.1080/02786820500421521.
  • Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. J., Flanner, M. G., Ghan, S., Kaercher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. G., Schulz, M., Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. K., Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U., Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G., and Zender, C. S. (2013). Bounding the Role of Black Carbon in the Climate System: A Scientific Assessment. J. Geophys. Res.: Atmos., 118(11):5380–5552.
  • Bostrom, G., Atkinson, D., and Rice, A. (2015). The Discrete Fourier Transform Algorithm for Determining Decay Constants—Implementation Using a Field Programmable Gate Array. Rev. Sci. Instrum., 86(4):043106. doi:10.1063/1.4916709.
  • Brown, S. S. (2003). Absorption Spectroscopy in High-Finesse Cavities for Atmospheric Studies. Chem. Rev., 103(12):5219–5238. doi:10.1021/cr020645c.
  • Cheng, Y., He, K.-B., Du, Z.-Y., Engling, G., Liu, J.-M., Ma, Y.-L., Zheng, M., and Weber, R. J. (2016). The Characteristics of Brown Carbon Aerosol during Winter in Beijing. Atmos. Environ., 127:355–364. doi:10.1016/j.atmosenv.2015.12.035.
  • Dial, K. D., Hiemstra, S., and Thompson, J. E. (2010). Simultaneous Measurement of Optical Scattering and Extinction on Dispersed Aerosol Samples. Anal. Chem., 82(19):7885–7896. doi:10.1021/ac100617j.
  • Drinovec, L., Močnik, G., Zotter, P., Prevot, A. S. H., Ruckstuhl, C., Coz, E., Rupakheti, M., Sciare, J., Mueller, T., Wiedensohler, A., and Hansen, A. D. A. (2015). The “dual-spot” Aethalometer: An Improved Measurement of Aerosol Black Carbon with Real-Time Loading Compensation. Atmos. Meas. Tech., 8(5):1965–1979. doi:10.5194/amt-8-1965-2015.
  • Everest, M. A. and Atkinson, D. B. (2008). Discrete Sums for the Rapid Determination of Exponential Decay Constants. Rev. Sci. Instrum., 79(2):023108. doi:10.1063/1.2839918.
  • Gyawali, M., Arnott, W. P., and Lewis, K. A. (2009). In Situ Aerosol Optics in Reno, NV, USA during and after the Summer 2008 California Wildfires and the Influence of Absorbing and Non-Absorbing Organic Coatings on Spectral Light Absorption. Atmos. Chem. Phys., 9(20):8007–8015. doi:10.5194/acp-9-8007-2009.
  • Haisch, C., Menzenbach, P., Bladt, H., and Niessner, R. (2012). A Wide Spectral Range Photoacoustic Aerosol Absorption Spectrometer. Anal. Chem., 84:8941–8945. doi:10.1021/ac302194u.
  • Hecobian, A., Zhang, X., Zheng, M., Frank, N., Edgerton, E. S., and Weber, R. J. (2010). Water-Soluble Organic Aerosol Material and the Light-Absorption Characteristics of Aqueous Extracts Measured over the Southeastern United States. Atmos. Chem. Phys., 10(13):5965–5977. doi:10.5194/acp-10-5965-2010.
  • Hoffer, A., Gelencser, A., Guyon, P., and Kiss, G. (2006). Optical Properties of Humic-Like Substances (HULIS) in Biomass-Burning Aerosols. Atmos. Chem. Phys., 6(11):3563–3570. doi:10.5194/acp-6-3563-2006.
  • Kim, H., Kim, J. Y., Jin, H. C., Lee, J. Y., and Lee, S. P. (2016). Seasonal Variations in the Light-Absorbing Properties of Water-Soluble and Insoluble Organic Aerosols in Seoul, Korea. Atmos. Environ., 129:234–242. doi:10.1016/j.atmosenv.2016.01.042.
  • Kirchstetter, T. W., Novakov, T., and Hobbs, P. (2004). Evidence that the Spectral Dependence of Light Absorption by Aerosols is Affected by Organic Carbon. J. Geophys. Res., 109:D21208. doi:10.1029/2004JD004999.
  • Lack, D. A. and Cappa, C. D. (2010). Impact of Brown and Clear Carbon on Light Absorption Enhancement, Single Scatter Albedo and Absorption Wavelength Dependence of Black Carbon. Atmos. Chem. Phys., 10(9):4207–4220. doi:10.5194/acp-10-4207-2010.
  • Lack, D. A. and Langridge, J. M. (2013). On the Attribution of Black and Brown Carbon Light Absorption Using the Ångström Exponent. Atmos. Chem. Phys., 13:10535–10543. doi:10.5194/acp-13-10535-2013.
  • Lack, D. A., Cappa, C. D., Covert, D. S., Baynard, T., Massoli, P., Sierau, B., Bates, T. S., Quinn, P. K., Lovejoy, E. R., and Ravishankara, A. R. (2008). Bias in Filter-Based Aerosol Light Absorption Measurements due to Organic Aerosol Loading: Evidence from Ambient Measurements. Aerosol Sci. Technol., 42(12):1033–1041. doi:10.1080/02786820802389277.
  • Lack, D. A., Lovejoy, E. R., Baynard, T., Pettersson, A., and Ravishankara, A. R. (2006). Aerosol Absorption Measurement Using Photoacoustic Spectroscopy: Sensitivity, Calibration, and Uncertainty Developments. Aerosol Sci. Technol., 40(9):697–708. doi:10.1080/02786820600803917.
  • Lack, D. A., Richardson, M., Law, D., Langridge, J., Cappa, C. D., McLaughlin, R., and Murphy, D. (2012). Aircraft Instrument for Comprehensive Characterization of Aerosol Optical Properties, Part 2: Black and Brown Carbon Absorption and Absorption Enhancement Measured with Photo Acoustic Spectroscopy. Aerosol Sci. Technol., 46:555–568. doi:10.1080/02786826.2011.645955.
  • Lewis, K. A., Arnott, W. P., and Wold, C. E. (2008). Strong Spectral Variation of Biomass Smoke Light Absorption and Single Scattering Albedo Observed with a Novel Dual-Wavelength Photoacoustic Instrument. J. Geophys. Res.: Atmos., 113(D16):D16203 doi:10.1029/2007JD009699.
  • Lin, H. B. and Campillo, A. J. (1985). Photothermal Aerosol Absorption-Spectroscopy. Appl. Opt., 24(3):422–433. doi:10.1364/AO.24.000422.
  • Linke, C., Ibrahim, I., Schleicher, N., Hitzenberger, R., Andreae, M. O., Leisner, T., and Schnaiter, M. (2016). A Novel Single-Cavity Three-Wavelength Photoacoustic Spectrometer for Atmospheric Aerosol Research. Atmos. Meas. Tech., 9(11):5331–5346. doi:10.5194/amt-9-5331-2016.
  • Liu, D., Taylor, J. W., Young, D. E., Flynn, M. J., Coe, H., and Allan, J. D. (2015). The Effect of Complex Black Carbon Microphysics on the Determination of the Optical Properties of Brown Carbon. Geophys. Res. Lett., 42(2):613–619. doi:10.1002/2014GL062443.
  • Liu, J., Bergin, M. H., Guo, H., King, L., Kotra, N., Edgerton, E. S., and Weber, R. J. (2013). Size-Resolved Measurements of Brown Carbon in Water and Methanol Extracts and Estimates of Their Contribution to Ambient Fine-Particle Light Absorption. Atmos. Chem. Phys., 13:12389–12404. doi:10.5194/acp-13-12389-2013.
  • Liu, J., Scheuer, E., Dibb, J., Diskin, G. S., Ziemba, L. D., Thornhill, K. L., Anderson, B. E., Wisthaler, A., Mikoviny, T., Devi, J. J., Bergin, M. H., Perring, A. E., Markovic, M. Z., Schwarz, J. P., Campuzano-Jost, P., Day, D. A., Jimenez, J. L., and Weber, R. J. (2015). Brown Carbon Aerosol in the North American Continental Troposphere: Sources, Abundance, and Radiative Forcing. Atmos. Chem. Phys., 15(14):7841–7858. doi:10.5194/acp-15-7841-2015.
  • Mazurenka, M., Wada, R., Shillings, A. J. L., Butler, T. J. A., Beames, J. M., and Orr-Ewing, A. J. (2005). Fast Fourier Transform Analysis in Cavity Ring-Down Spectroscopy: Application to an Optical Detector for Atmospheric NO2. Appl. Phys. B: Lasers Opt., 81(1):135–141. doi:10.1007/s00340-005-1834-1.
  • Miklos, A., Hess, P., and Bozoki, Z. (2001). Application of Acoustic Resonators in Photoacoustic Trace Gas Analysis and Metrology. Rev. Sci. Instrum., 72(4):1937–1955. doi:10.1063/1.1353198.
  • Moosmüller, H., Arnott, W. P., and Rogers, C. F. (1997). Methods for Real-Time, in Situ Measurement of Aerosol Light Absorption. J. Air Waste Manage. Assoc., 47(2):157–166. doi:10.1080/10473289.1997.10464430.
  • Moosmüller, H., Chakrabarty, R. K., and Arnott, W. P. (2009). Aerosol Light Absorption and its Measurement: A Review. J. Quant. Spectrosc. Radiat. Transfer, 110(11):844–878. doi:10.1016/j.jqsrt.2009.02.035.
  • Nakayama, T., Suzuki, H., Kagamitani, S., Ikeda, Y., Uchiyama, A., Matsumi, Y., matsumi. (2015). Characterization of a Three Wavelength Photoacoustic Soot Spectrometer (PASS-3) and a Photoacoustic Extinctiometer (PAX). J. Meteorol. Soc. Jpn., 93(2):285–308. doi:10.2151/jmsj.2015-016.
  • Onasch, T. B., Massoli, P., Kebabian, P. L., Hills, F. B., Bacon, F. W., and Freedman, A. (2015). Single Scattering Albedo Monitor for Airborne Particulates. Aerosol Sci. Technol., 49(4):267–279. doi:10.1080/02786826.2015.1022248.
  • Petzold, A. and Niessner, R. (1995). Novel Design of a Resonant Photoacoustic Spectrophone for Elemental Carbon Mass Monitoring. App. Phys. Lett., 66(10):1285–1287.
  • Petzold, A. and Schönlinner, M. (2004). Multi-Angle Absorption Photometry – A New Method for the Measurement of Aerosol Light Absorption and Atmospheric Black Carbon. J. Aerosol Sci., 35(4):421–441. doi:10.1016/j.jaerosci.2003.09.005.
  • Phillips, S. M. and Smith, G. D. (2017a). Spectroscopic Comparison of Water-and Methanol-Soluble Brown Carbon Particulate Matter. Aerosol Sci. Technol., doi:10.1080/02786826.2017.1334109.
  • Phillips, S. M. and Smith, G. D. (2017b). Spectroscopic Comparison of Water-and Methanol-Soluble Brown Carbon Particulate Matter. Aerosol Sci. Technol., 1–9.
  • Radney, J. G. and Zangmeister, C. D. (2015). Measurement of Gas and Aerosol Phase Absorption Spectra Across the Visible and Near-IR Using Supercontinuum Photoacoustic Spectroscopy. Anal. Chem., 87(14):7356–7363. doi:10.1021/acs.analchem.5b01541.
  • Romonosky, D. E., Ali, N. N., Saiduddin, M. N., Wu, M., Lee, H. J. J., Aiona, P. K., and Nizkorodov, S. A. (2016). Effective Absorption Cross Sections and Photolysis Rates of Anthropogenic and Biogenic Secondary Organic Aerosols. Atmos. Environ., 130:172–179. doi:10.1016/j.atmosenv.2015.10.019.
  • Sedlacek, A. and Lee, J. (2007). Photothermal Interferometric Aerosol Absorption Spectrometry. Aerosol Sci. Technol., 41(12):1089–1101. doi:10.1080/02786820701697812.
  • Shapiro, E., Szprengiel, J., Sareen, N., Jen, C., Giordano, M., and McNeill, V. (2009). Light-Absorbing Secondary Organic Material Formed by Glyoxal in Aqueous Aerosol Mimics. Atmos. Chem. Phys., 9(7):2289–2300. doi:10.5194/acp-9-2289-2009.
  • Sharma, N., Arnold, I. J., Arnott, W. P., and Mazzoleni, C. (2013). Photoacoustic and Nephelometric Spectroscopy of Aerosol Optical Properties with a Supercontinuum Light Source. Atmos. Meas. Tech., 6(4):6293–6327.
  • Silver, J. A. (2005). Simple Dense-Pattern Optical Multipass Cells. Appl. Opt., 44(31):6545–6556. doi:10.1364/AO.44.006545.
  • Singh, S., Fiddler, M. N., Smith, D., and Bililign, S. (2014). Error Analysis and Uncertainty in the Determination of Aerosol Optical Properties Using Cavity Ring-Down Spectroscopy, Integrating Nephelometry, and the Extinction-Scattering Method. Aerosol Sci. Technol., 48(12):1345–1359. doi:10.1080/02786826.2014.984062.
  • Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M. ( Eds.) (2014). Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USA.
  • Truex, T. J. and Anderson, J. E. (1979). Mass Monitoring of Carbonaceous Aerosols with a Spectrophone. Atmos. Environ., Part A, 13:507–509. doi:10.1016/0004-6981(79)90143-4.
  • Wang, X., Heald, C. L., Sedlacek, A. J., de Sá, S. S., Martin, S., Alexander, M. L., Watson, T. B., Aiken, A. C., Springston, S. R., and Artaxo, P. (2016). Deriving Brown Carbon from Multiwavelength Absorption Measurements: Method and Application to AERONET and Aethalometer Observations. Atmos. Chem. Phys., 16:12733–12752. doi:10.5194/acp-16-12733-2016.
  • Weingartner, E., Saathoff, H., Schnaiter, M., Streit, N., Bitnar, B., and Baltensperger, U. (2003). Absorption of Light by Soot Particles: Determination of the Absorption Coefficient by Means of Aethalometers. J. Aerosol Sci., 34:1445–1463. doi:10.1016/S0021-8502(03)00359-8.
  • Wiegand, J. R., Mathews, L. D., and Smith, G. D. (2014). A UV-Vis Photoacoustic Spectrophotometer. Anal. Chem., 86(12):6049–6056. doi:10.1021/ac501196u.
  • Zhang, X., Kim, H., Parworth, C. L., Young, D. E., Zhang, Q., Metcalf, A. R., and Cappa, C. D. (2016). Optical Properties of Wintertime Aerosols from Residential Wood Burning in Fresno, CA: Results from DISCOVER-AQ 2013. Environ. Sci. Technol., 50(4):1681–1690. doi:10.1021/acs.est.5b04134.
  • Zhang, X., Lin, Y.-H., Surratt, J. D., and Weber, R. J. (2013). Sources, Composition and Absorption Ångström Exponent of Light-Absorbing Organic Components in Aerosol Extracts from the Los Angeles Basin. Environ. Sci. Technol., 47(8):3685–3693. doi:10.1021/es305047b.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.