1,339
Views
18
CrossRef citations to date
0
Altmetric
Articles

Cloud condensation nuclei from the activation with ozone of soot particles sampled from a kerosene diffusion flame

, , , , &
Pages 814-827 | Received 19 Jul 2017, Accepted 14 Mar 2018, Published online: 30 Jul 2018

References

  • ACI 2016, “Releases Its 2016 World Airport Traffic Report”. Media Release, Airports Council International, Montreal, www.aci.aero
  • Albrecht, B. A. (1989). Aerosols, Cloud Microphysics, and Fractional Cloudiness. Science, 245:1227–1231.
  • Andreae, M. O. and Gelencsér, A. (2006). Black Carbon or Brown Carbon? The Nature of Light-Absorbing Carbonaceous Aerosols. Atmospheric Chem. Phys., 6:3131–3148.
  • Apicella, B., Carpentieri, A., Alfè, M., Barbella, R., Tregrossi, A., Pucci, P., and Ciajolo, A. (2007). Mass Spectrometric Analysis of Large PAH in a Fuel-Rich Ethylene Flame. Proc. Combust. Inst., 31:547–553.
  • Bedjanian, Y. and Nguyen, M. L. (2010). Kinetics of the Reactions of Soot Surface-Bound Polycyclic Aromatic Hydrocarbons with O3. Chemosphere, 79:387–393.
  • Bejaoui, S., Batut, S., Therssen, E., Lamoureux, N., Desgroux, P., and Liu, F. (2015). Measurements and Modeling of Laser-Induced Incandescence of Soot at Different Heights in a Flat Premixed Flame. Appl. Phys. B, 118:449–469.
  • Bescond, A., Yon, J., Ouf, F. X., Ferry, D., Delhaye, D., Gaffié, D., Coppalle, A., and Rozé, C. (2014). Automated Determination of Aggregate Primary Particle Size Distribution by TEM Image Analysis: Application to Soot. Aerosol Sci. Technol., 48:831–841.
  • Bonczyk, P. A. and Hall, R. J. (1991). Fractal Properties of Soot Agglomerates. Langmuir, 7:1274–1280.
  • Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. J., Flanner, M. G., Ghan, S., Kärcher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. G., Schulz, M., Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. K., Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U., Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G., and Zender, C. S. (2013). Bounding the Role of Black Carbon in the Climate System: A Scientific Assessment. J. Geophys. Res. Atmos., 118:5380–5552.
  • Browne, E. C., Franklin, J. P., Canagaratna, M. R., Massoli, P., Kirchstetter, T. W., Worsnop, D. R., Wilson, K. R., and Kroll, J. H. (2015). Changes to the Chemical Composition of Soot From Heterogeneous Oxidation Reactions. J. Phys. Chem. A, 119:1154–1163.
  • Camacho, J., Tao, Y., and Wang, H. (2015). Kinetics of Nascent Soot Oxidation by Molecular Oxygen in a Flow Reactor. Proc. Combust. Inst., 35:1887–1894.
  • Chowdhury, S., Boyette, W. R., and Roberts, W. L. (2017). Time-Averaged Probability Density Functions of Soot Nanoparticles Along the Centerline of a Piloted Turbulent Diffusion Flame Using a Scanning Mobility Particle Sizer. J. Aerosol Sci., 106(Supplement C):56–67.
  • Dakhel, P. M., Lukachko, S. P., Waitz, I. A., Miake-Lye, R. C., and Brown, R. C. (2005). Post-combustion Evolution of Soot Properties in an Aircraft Engine., in ASME Turbo Expo 2005: Power for Land, Sea, and Air, Reno, Nevada, USA, 6–9 June.
  • Delhaye, D., Ouf, F.-X., Ferry, D., Ortega, I. K., Penanhoat, O., Peillon, S., Salm, F., Vancassel, X., Focsa, C., Irimiea, C., Harivel, N., Perez, B., Quinton, E., Yon, J., and Gaffie, D. (2017). The MERMOSE Project: Characterization of Particulate Matter Emissions of a Commercial Aircraft Engine. J. Aerosol Sci., 105(Supplement C):48–63.
  • Demirdjian, B., Ferry, D., Suzanne, J., Popovicheva, O., Persiantseva, N., and Shonija, N. (2007). Heterogeneities in the Microstructure and Composition of Aircraft Engine Combustor Soot: Impact on the Water Uptake. J. Atmospheric Chem., 56:83–103.
  • Dobbins, R. A., Fletcher, R. A., Benner, B. A., and Hoeft, S. (2006). Polycyclic Aromatic Hydrocarbons in Flames, in Diesel Fuels, and in Diesel Emissions. Combust. Flame, 144:773–781.
  • Dobbins, R. A., Fletcher, R. A., and Chang, H.-C. (1998). The Evolution of Soot Precursor Particles in a Diffusion Flame. Combust. Flame, 115:285–298.
  • Eyers, C. J., Norman, P., Middel, J., Plohr, M., Michot, S., Atkinson, K., and Christou, R. A. (2004). AERO2K global aviation emissions inventories for 2002 and 2025, Project Report 04/01113, 144 S. Köln-Porz, Germany.
  • Faccinetto, A., Desgroux, P., Ziskind, M., Therssen, E., and Focsa, C. (2011). High-Sensitivity Detection of Polycyclic Aromatic Hydrocarbons Adsorbed Onto Soot Particles Using Laser Desorption/Laser Ionization/Time-of-Flight Mass Spectrometry: An Approach to Studying the Soot Inception Process in Low-Pressure Flames. Combust. Flame, 158:227–239.
  • Giordana, A., Maranzana, A., Ghigo, G., Causa, M., and Tonachini, G. (2008). Soot platelets and PAHs with an odd number of unsaturated carbon atoms and π electrons: theoretical study of their spin properties and interaction with ozone. J. Phys. Chem. A, 112:973–982
  • Han, C., Liu, Y., Liu, C., Ma, J., and He, H. (2012). Influence of Combustion Conditions on Hydrophilic Properties and Microstructure of Flame Soot. J. Phys. Chem. A, 116:4129–4136.
  • Henning, S., Ziese, M., Kiselev, A., Saathoff, H., Möhler, O., Mentel, T., Buchholz, A., Spindler, C., Michaud, V., and Monier, M. (2012). Hygroscopic Growth and Droplet Activation of Soot Particles: Uncoated, Succinic or Sulfuric Acid Coated. Atmospheric Chem. Phys., 12:4525–4537.
  • Hurt, R. H., Crawford, G. P., and Shim, H.-S. (2000). Equilibrium Nanostructure of Primary Soot Particles. Proc. Combust. Inst., 28:2539–2546.
  • Ishiguro, T., Takatori, Y., and Akihama, K. (1997). Microstructure of Diesel Soot Particles Probed by Electron Microscopy: First Observation of Inner Core and Outer Shell. Combust. Flame, 108:231–234.
  • Jones, C. C., Chughtai, A. R., Murugaverl, B., and Smith, D. M. (2004). Effects of Air/Fuel Combustion Ratio on the Polycyclic Aromatic Hydrocarbon Content of Carbonaceous Soots From Selected Fuels. Carbon, 42:2471–2484.
  • Kärcher, B., Hirschberg, M. M., and Fabian, P. (1996). Small-Scale Chemical Evolution of Aircraft Exhaust Species at Cruising Altitudes. J. Geophys. Res. Atmospheres, 101:15169–15190.
  • Karjalainen, P., Pirjola, L., Heikkilä, J., Lähde, T., Tzamkiozis, T., Ntziachristos, L., Keskinen, J., and Rönkkö, T. (2014). Exhaust Particles of Modern Gasoline Vehicles: A Laboratory and an On-Road Study. Atmos. Environ., 97(Supplement C):262–270.
  • Khalizov, A. F., Zhang, R., Zhang, D., Xue, H., Pagels, J., and McMurry, P. H. (2009). Formation of Highly Hygroscopic Soot Aerosols Upon Internal Mixing With Sulfuric Acid Vapor. J. Geophys. Res. Atmospheres 1984–2012, 114.
  • Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, L., and others. (2005). System for Assessing Aviation’s Global Emissions (SAGE). Version 1.5, Technical Manual, Federal Aviation Administration, Office of Environment and Energy. FAA-EE-2005-01.
  • Kim, B. Y., Fleming, G. G., Lee, J. J., Waitz, I. A., Clarke, J.-P., Balasubramanian, S., Malwitz, A., Klima, K., Locke, M., Holsclaw, C. A., Maurice, L. Q., and Gupta, M. L. (2007). System for Assessing Aviation’s Global Emissions (SAGE), Part 1: Model Description and Inventory Results. Transp. Res. Part Transp. Environ., 12:325–346.
  • Köhler, K. A., DeMott, P. J., Kreidenweis, S. M., Popovicheva, O. B., Petters, M. D., Carrico, C. M., Kireeva, E. D., Khokhlova, T. D., and Shonija, N. K. (2009). Cloud Condensation Nuclei and Ice Nucleation Activity of Hydrophobic and Hydrophilic Soot Particles. Phys. Chem. Chem. Phys., 11:7906–7920.
  • Kotzick, R. and Niessner, R. (1999). The Effects of Aging Processes on Critical Supersaturation Ratios of Ultrafine Carbon Aerosols. Atmos. Environ., 33:2669–2677.
  • Kotzick, R., Panne, U., and Niessner, R. (1997). Changes in Condensation Properties of Ultrafine Carbon Particles Subjected to Oxidation by Ozone. J. Aerosol Sci., 28:725–735.
  • Lambe, A., Ahern, A., Wright, J., Croasdale, D., Davidovits, P., and Onasch, T. (2015). Oxidative Aging and Cloud Condensation Nuclei Activation of Laboratory Combustion Soot. J. Aerosol Sci., 79:31–39.
  • Lance, S., Nenes, A., Medina, J., and Smith, J. (2006). Mapping the Operation of the DMT Continuous Flow CCN Counter. Aerosol Sci. Technol., 40:242–254.
  • Lee, D. S., Fahey, D. W., Forster, P. M., Newton, P. J., Wit, R. C., Lim, L. L., Owen, B., and Sausen, R. (2009). Aviation and Global Climate Change in the 21st Century. Atmos. Environ., 43(22):3520–3537.
  • Lee, D. S., Pitari, G., Grewe, V., Gierens, K., Penner, J. E., Petzold, A., Prather, M. J., Schumann, U., Bais, A., Berntsen, T., and others (2010). Transport Impacts on Atmosphere and Climate: Aviation. Atmos. Environ., 44:4678–4734.
  • Lemaire, R., Faccinetto, A., Therssen, E., Ziskind, M., Focsa, C., and Desgroux, P. (2009a). Experimental Comparison of Soot Formation in Turbulent Flames of Diesel and Surrogate Diesel Fuels. Proc. Combust. Inst., 32:737–744.
  • Lemaire, R., Maugendre, M., Schuller, T., Therssen, E., and Yon, J. (2009). Original Use of a Direct Injection High Efficiency Nebulizer for the Standardization of Liquid Fuels Spray Flames. Rev. Sci. Instrum., 80:105105.
  • Lemaire, R., Therssen, E., and Desgroux, P. (2010). Effect of Ethanol Addition in Gasoline and Gasoline–Surrogate on Soot Formation in Turbulent Spray Flames. Fuel, 89:3952–3959.
  • Lemaire, R., Therssen, E., Pauwels, J. F., and Desgroux, P. (2009b). Experimental Comparison of Soot Formation in Turbulent Flames of Kerosene and Surrogate Model Fuels. KIT Scientific Publishing, Karlsruhe, Germany.
  • Lewis, J. S., Niedzwiecki, R. W., Bahr, D. W., Bullock, S., Cumpsty, N., Dodds, W., DuBois, D., and Epstein, A. (1999). Aircraft Technology and Its Relation to Emissions, in Aviation and the Global Atmosphere, J. E. Penner, D. H. Lister, D. J. Griggs, D. J. Dokken, M. McFarland, eds., Cambridge University Press, Cambridge, UK.
  • Liati, A., Brem, B. T., Durdina, L., Vögtli, M., Arroyo Rojas Dasilva, Y., Dimopoulos Eggenschwiler, P., and Wang, J. (2014). Electron Microscopic Study of Soot Particulate Matter Emissions from Aircraft Turbine Engines. Environ. Sci. Technol., 48:10975–10983.
  • Lin, M., Horowitz, L. W., Cooper, O. R., Tarasick, D., Conley, S., Iraci, L. T., Johnson, B., Leblanc, T., Petropavlovskikh, I., and Yates, E. L. (2015). Revisiting the Evidence of Increasing Springtime Ozone Mixing Ratios in the Free Troposphere Over Western North America. Geophys. Res. Lett., 42:8719–8728.
  • Mahashabde, A., Wolfe, P., Ashok, A., Dorbian, C., He, Q., Fan, A., Lukachko, S., Mozdzanowska, A., Wollersheim, C., Barrett, S. R., and others (2011). Assessing the Environmental Impacts of Aircraft Noise and Emissions. Prog. Aerosp. Sci., 47:15–52.
  • Maranzana, A., Serra, G., Giordana, A., Tonachini, G., Barco, G., and Causà, M. (2005). Ozone Interaction With Polycyclic Aromatic Hydrocarbons and Soot in Atmospheric Processes: Theoretical Density Functional Study by Molecular and Periodic Methodologies. J. Phys. Chem. A, 109:10929–10939.
  • Maricq, M. M. (2014). Examining the Relationship Between Black Carbon and Soot in Flames and Engine Exhaust. Aerosol Sci. Technol., 48:620–629.
  • Maricq, M. M. (2011). Physical and Chemical Comparison of Soot in Hydrocarbon and Biodiesel Fuel Diffusion Flames: A Study of Model and Commercial Fuels. Combust. Flame, 158:105–116.
  • Masiol, M. and Harrison, R. M. (2014). Aircraft Engine Exhaust Emissions and Other Airport-Related Contributions to Ambient Air Pollution: A Review. Atmos. Environ., 95:409–455.
  • McCabe, J. and Abbatt, J. P. D. (2008). Heterogeneous Loss of Gas-Phase Ozone on n-Hexane Soot Surfaces: Similar Kinetics to Loss on Other Chemically Unsaturated Solid Surfaces. J. Phys. Chem. C, 113:2120–2127.
  • Meyer, N. K. and Ristovski, Z. D. (2007). Ternary Nucleation as a Mechanism for the Production of Diesel Nanoparticles: Experimental Analysis of the Volatile and Hygroscopic Properties of Diesel Exhaust Using the Volatilization and Humidification Tandem Differential Mobility Analyzer. Environ. Sci. Technol., 41:7309–7314.
  • Olsen, S. C., Wuebbles, D. J., and Owen, B. (2013). Comparison of Global 3-D Aviation Emissions Datasets. Atmos Chem Phys, 13:429–441.
  • Oubal, M., Picaud, S., Rayez, M.-T., and Rayez, J.-C. (2010). Water Adsorption on Oxidized Single Atomic Vacancies Present at the Surface of Small Carbonaceous Nanoparticles Modeling Soot. ChemPhysChem, 11:4088–4096.
  • Ouf, F. X., Yon, J., Ausset, P., Coppalle, A., and Maillé, M. (2010). Influence of Sampling and Storage Protocol on Fractal Morphology of Soot Studied by Transmission Electron Microscopy. Aerosol Sci. Technol., 44:1005–1017.
  • Parent, P., Laffon, C., Marhaba, I., Ferry, D., Regier, T. Z., Ortega, I. K., Chazallon, B., Carpentier, Y., and Focsa, C. (2016). Nanoscale Characterization of Aircraft Soot: A High-Resolution Transmission Electron Microscopy, Raman Spectroscopy, X-Ray Photoelectron and Near-Edge X-Ray Absorption Spectroscopy Study. Carbon, 101:86–100.
  • Penner, J. E. (1999). Aviation and the Global Atmosphere: a Special Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.
  • Perraudin, E., Budzinski, H., and Villenave, E. (2007). Identification and Quantification of Ozonation Products of Anthracene and Phenanthrene Adsorbed on Silica Particles. Atmos. Environ., 41:6005–6017.
  • Petters, M. and Kreidenweis, S. (2007). A Single Parameter Representation of Hygroscopic Growth and Cloud Condensation Nucleus Activity. Atmos Chem Phys, 7:1961–1971.
  • Petzold, A., Busen, R., Schröder, F. P., Baumann, R., Kuhn, M., Ström, J., Hagen, D. E., Whitefield, P. D., Baumgardner, D., Arnold, F., and others (1997). Near-Field Measurements on Contrail Properties From Fuels With Different Sulfur Content. J. Geophys. Res., 102:29867–29880.
  • Petzold, A., Stein, C., Nyeki, S., Gysel, M., Weingartner, E., Baltensperger, U., Giebl, H., Hitzenberger, R., Döpelheuer, A., and Vrchoticky, S. (2003). Properties of Jet Engine Combustion Particles During the PartEmis Experiment: Microphysics and chemistry. Geophys. Res. Lett., 30:1719.
  • Pincus, R. and Baker, M. B. (1994). Effect of Precipitation on the Albedo Susceptibility of Clouds in the Marine Boundary Layer. Nature, 372:250–252.
  • Popovicheva, O. B., Persiantseva, N. M., Kireeva, E. D., Khokhlova, T. D., and Shonija, N. K. (2011). Quantification of the Hygroscopic Effect of Soot Aging in the Atmosphere: Laboratory Simulations. J. Phys. Chem. A, 115:298–306.
  • Popovicheva, O. B., Persiantseva, N. M., Tishkova, V., Shonija, N. K., and Zubareva, N. A. (2008). Quantification of Water Uptake by Soot Particles. Environ. Res. Lett., 3:025009.
  • Pruppacher, H. R., Klett, J. D., and Wang, P. K. (1997). Microphysics of Clouds and Precipitation, Springer.
  • Roberts, G. and Nenes, A. (2005). A Continuous-Flow Streamwise Thermal-Gradient CCN Chamber for Atmospheric Measurements. Aerosol Sci. Technol., 39:206–221.
  • Saffaripour, M., Kholghy, M., Dworkin, S. B., and Thomson, M. J. (2013). A Numerical and Experimental Study of Soot Formation in a Laminar Coflow Diffusion Flame of a Jet A-1 Surrogate. Proc. Combust. Inst., 34:1057–1065.
  • Samson, R. J., Mulholland, G. W., and Gentry, J. W. (1987). Structural Analysis of Soot Agglomerates. Langmuir, 3:272–281.
  • Santoro, R. J. and Semerjian, H.G. (1985). Soot Formation in Diffusion Flames: Flow Rate, Fuel Species and Temperature Effects. Symposium (International) on Combustion, Elsevier, 997–1006.
  • Seinfeld, J. H., Pandis, S. N., and Noone, K. (1998). Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. John Wiley and Sons, New York, USA.
  • Shiraiwa, M., Sosedova, Y., Rouvière, A., Yang, H., Zhang, Y., Abbatt, J. P., Ammann, M., and Pöschl, U. (2011). The Role of Long-Lived Reactive Oxygen Intermediates in the Reaction of Ozone With Aerosol Particles. Nat. Chem., 3:291–295.
  • Simone, N. W., Stettler, M. E. J., and Barrett, S. R. H. (2013). Rapid Estimation of Global Civil Aviation Emissions With Uncertainty Quantification. Transp. Res. Part Transp. Environ., 25:33–41.
  • Smooke, M. D., Long, M. B., Connelly, B. C., Colket, M. B., and Hall, R. J. (2005). Soot Formation in Laminar Diffusion Flames. Combust. Flame, 143:613–628.
  • Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, B., and Midgley, B. M. (2013). IPCC, 2013: climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK.
  • Stubenrauch, C. J. and Schumann, U. (2005). Impact of Air Traffic on Cirrus Coverage. Geophys. Res. Lett., 32: L14813. doi:10.1029/2005GL022707.
  • Sullivan, R., Moore, M., Petters, M., Kreidenweis, S., Roberts, G., and Prather, K. (2009). Effect of Chemical Mixing State on the Hygroscopicity and Cloud Nucleation Properties of Calcium Mineral Dust Particles. Atmospheric Chem. Phys., 9:3303–3316.
  • Tritscher, T., Jurányi, Z., Martin, M., Chirico, R., Gysel, M., Heringa, M. F., DeCarlo, P. F., Sierau, B., Prévôt, A. S., and Weingartner, E. (2011). Changes of Hygroscopicity and Morphology During Ageing of Diesel Soot. Environ. Res. Lett., 6:034026.
  • Twomey, S. (1959). The Nuclei of Natural Cloud Formation Part II: The Supersaturation in Natural Clouds and the Variation of Cloud Droplet Concentration. Pure Appl. Geophys., 43:243–249.
  • Wang, H. (2011). Formation of Nascent Soot and Other Condensed-Phase Materials in Flames. Proc. Combust. Inst., 33:41–67.
  • Wang, X., Heald, C. L., Ridley, D. A., Schwarz, J. P., Spackman, J. R., Perring, A.E., Coe, H., Liu, D., and Clarke, A. D. (2014). Exploiting Simultaneous Observational Constraints on Mass and Absorption to Estimate the Global Direct Radiative Forcing of Black Carbon and Brown Carbon. Atmospheric Chem. Phys., 14:10989–11010.
  • Weingartner, E., Burtscher, H., and Baltensperger, U. (1997). Hygroscopic Properties of Carbon and Diesel Soot Particles. Atmos. Environ., 31:2311–2327.
  • Wittbom, C., Eriksson, A. C., Rissler, J., Carlsson, J. E., Roldin, P., Nordin, E. Z., Nilsson, P. T., Swietlicki, E., Pagels, J. H., and Svenningsson, B. (2014). Cloud Droplet Activity Changes of Soot Aerosol Upon Smog Chamber Ageing. Atmospheric Chem. Phys., 14:9831–9854.
  • Yon, J., Lemaire, R., Therssen, E., Desgroux, P., Coppalle, A., and Ren, K. F. (2011). Examination of Wavelength Dependent Soot Optical Properties of Diesel and Diesel/Rapeseed Methyl Ester Mixture by Extinction Spectra Analysis and LII Measurements. Appl. Phys. B, 104:253–271.
  • Zhang, R., Khalizov, A. F., Pagels, J., Zhang, D., Xue, H., and McMurry, P. H. (2008). Variability in Morphology, Hygroscopicity, and Optical Properties of Soot Aerosols During Atmospheric Processing. Proc. Natl. Acad. Sci., 105:10291–10296.
  • Zuberi, B., Johnson, K. S., Aleks, G. K., Molina, L. T., Molina, M. J., and Laskin, A. (2005). Hydrophilic Properties of Aged Soot. Geophys. Res. Lett., 32.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.