2,163
Views
14
CrossRef citations to date
0
Altmetric
Articles

Effective density of airborne particles in a railway tunnel from field measurements of mobility and aerodynamic size distributions

&
Pages 886-899 | Received 06 Feb 2018, Accepted 08 May 2018, Published online: 30 Jul 2018

References

  • Abbasi, S., Jansson, A., Olander, L., Olofsson, U., and Sellgren, U. (2012). A Pin-on-Disc Study of the Rate of Airborne Wear Particle Emissions from Railway Braking Materials. Wear, 284–285:18–29.
  • Alberta Environment. (2009). Standard Operating Procedure for the Tapered Element Oscillating Microbalance (TEOM), AEVN Air Monitoring and Audit Centre. https://www3.epa.gov/ttnamti1/files/ambient/pm25/sop_project/905505_TEOM_SOP_Draft_Final_Sept09.pdf.
  • Alemani, M., Nosko, O., Metinoz, I., and Olofsson, U. (2015). A Study on Emission of Airborne Wear Particles from Car Brake Friction Pairs. SAE Int. J. Mater. Manuf., 9:147–157.
  • Branĭ, M. (2006). The Contribution of Ambient Sources to Particulate Pollution in Spaces and Trains of the Prague Underground Transport System. Atmos. Environ., 40:348–356.
  • Cartenì, A., Cascetta, F., and Campana, S. (2015). Underground and Ground-Level Particulate Matter Concentrations in an Italian Metro System. Atmos. Environ., 101:328–337.
  • Cha, Y., Abbasi, S., and Olofsson, U. (2018a). Indoor and Outdoor Measurement of Airborne Particulates on a Commuter Train Running Partly in Tunnels. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit., 232:3–13.
  • Cha, Y., Hedberg, Y., Mei, N., and Olofsson, U. (2016). Airborne Wear Particles Generated from Conductor Rail and Collector Shoe Contact: Influence of Sliding Velocity and Particle Size. Tribol. Lett., 64:40.
  • Cha, Y., Olofsson, U., Gustafsson, M., and Johansson, C. (2018b). On Particulate Emissions from Moving Trains in a Tunnel Environment. Transp. Res. Part D Transp. Environ., 59:35–45.
  • Cowen, K., Kelly, T., Coutant, B., and Riggs, K. (2001). Environmental Technology Report, ETV Advanced Monitoring Systems Center, Rupprecht & Patashnick Co., Series 1400a TEOM Particle Monitor with Sample Equilibration System.
  • DeCarlo, P. F., Slowik, J. G., Worsnop, D. R., Davidovits, P., and Jimenez, J. L. (2004). Particle Morphology and Density Characterization by Combined Mobility and Aerodynamic Diameter Measurements. Part 1: Theory. Aerosol Sci. Technol., 38:1206–1222.
  • Dinar, E., Mentel, T. F., and Rudich, Y. (2006). The Density of Humic Acids and Humic Like Substances (HULIS) from Fresh and Aged Wood Burning and Pollution Aerosol Particles. Atmos. Chem. Phys. Discuss., 6:7835–7867.
  • Fridell, E., Ferm, M., and Ekberg, A. (2010). Emissions of Particulate Matters from Railways – Emission Factors and Condition Monitoring. Transp. Res. Part D Transp. Environ., 15:240–245.
  • Gustafsson, M., Abbasi, S., Blomqvist, G., Cha, Y., Gudmundsson, A., Janhäll, S., Johansson, C., Norman, M., and Olofsson, U. (2016). Particles in Road and Railroad Tunnel Air – Sources, Properties and Abatement Measures. VTI report 917A, 15–20.
  • Gustafsson, M., Blomqvist, G., Gudmundsson, A., Janhäll, S., Johansson, C., Norman, M., and Olofsson, U. (2017). Particle Mass Size Distribution Relation to Train Traffic and Type in a Railway Tunnel. J. Earth Sci. Geotech. Eng., 7:119–126.
  • Gustafsson, M., Blomqvist, G., Swietlicki, E., Dahl, A., and Gudmundsson, A. (2012). Inhalable Railroad Particles at Ground Level and Subterranean Stations – Physical and Chemical Properties and Relation to Train Traffic. Transp. Res. Part D Transp. Environ., 17:277–285.
  • Hu, M., Peng, J., Sun, K., Yue, D., Guo, S., Wiedensohler, A., and Wu, Z. (2012). Estimation of Size-Resolved Ambient Particle Density Based on the Measurement of Aerosol Number, Mass, and Chemical Size Distributions in the Winter in Beijing. Environ. Sci. Technol., 46:9941–9947.
  • Kam, W., Cheung, K., Daher, N., and Sioutas, C. (2011). Particulate Matter (PM) Concentrations in Underground and Ground-Level Rail Systems of the Los Angeles Metro. Atmos. Environ., 45:1506–1516.
  • Kannosto, J., Lemmetty, M., Virtanen, a., Mäkelä, J. M., Keskinen, J., Junninen, H., Hussein, T., Aalto, P., and Kulmala, M. (2008). Mode Resolved Density of Atmospheric Aerosol Particles. Atmos. Chem. Phys. Discuss., 8:7263–7288.
  • Karlsson, H. L., Holgersson, A., and Möller, L. (2008). Mechanisms Related to the Genotoxicity of Particles in the Subway and from Other Sources. Chem. Res. Toxicol., 21:726–731.
  • Kelly, W. P., and McMurry, P. H. (1992). Measurement of Particle Density by Inertial Classification of Differential Mobility Analyzer–Generated Monodisperse Aerosols. Aerosol Sci. Technol., 17:199–212.
  • Khalizov, A. F., Hogan, B., Qiu, C., Petersen, E. L., and Zhang, R. (2012). Characterization of Soot Aerosol Produced from Combustion of Propane in a Shock Tube. Aerosol Sci. Technol., 46:925–936.
  • Khlystov, A., Stanier, C., and Pandis, S. N. (2004). An Algorithm for Combining Electrical Mobility and Aerodynamic Size Distributions Data When Measuring Ambient Aerosol. Aerosol Sci. Technol., 38:229–238.
  • Kim, K. Y., Kim, Y. S., Roh, Y. M., Lee, C. M., and Kim, C. N. (2008). Spatial Distribution of Particulate Matter (PM10 and PM2.5) in Seoul Metropolitan Subway Stations. J. Hazard. Mater., 154:440–443.
  • Klepczyńska Nyström, a, Svartengren, M., Grunewald, J., Pousette, C., Rödin, I., Lundin, a, Sköld, C.M., Eklund, a, and Larsson, B.-M. (2010). Health Effects of a Subway Environment in Healthy Volunteers. Eur. Respir. J., 36:240–8.
  • Kumar, P., Robins, A., Vardoulakis, S., and Britter, R. (2010). A review of the Characteristics of Nanoparticles in the Urban Atmosphere and the Prospects for Developing Regulatory Controls. Atmos. Environ., 44:5035–5052.
  • Leskinen, J., Ihalainen, M., Torvela, T., Kortelainen, M., Lamberg, H., Tiitta, P., Jakobi, G., Grigonyte, J., Joutsensaari, J., Sippula, O., Tissari, J., Virtanen, A., Zimmermann, R., and Jokiniemi, J. (2014). Effective Density and Morphology of Particles Emitted from Small-Scale Combustion of Various Wood Fuels. Environ. Sci. Technol., 48:13298–13306.
  • Leskinen, J., Joutsensaari, J., Lyyränen, J., Koivisto, J., Ruusunen, J., Järvelä, M., Tuomi, T., Hämeri, K., Auvinen, A., and Jokiniemi, J. (2012). Comparison of Nanoparticle Measurement Instruments for Occupational Health Applications. J. Nanoparticle Res., 14.
  • Liu, H., Cha, Y., Olofsson, U., Jonsson, L. T. I., and Jönsson, P. G. (2016). Effect of the Sliding Velocity on the Size and Amount of Airborne Wear Particles Generated from Dry Sliding Wheel–Rail Contacts. Tribol. Lett., 63:30.
  • Maricq, M. M. and Xu, N. (2004). The Effective Density and Fractal Dimension of Soot Particles from Premixed Flames and Motor Vehicle Exhaust. J. Aerosol Sci., 35(10):1251–1274.
  • Marjamäki, M., Lemmetty, M., and Keskinen, J. (2005). ELPI Response and Data Reduction I: Response Functions. Aerosol Sci. Technol., 39:575–582.
  • Martins, V., Cruz Minguillón, M., Moreno, T., Querol, X., de Miguel, E., Capdevila, M., Centelles, S., and Lazaridis, M. (2015). Deposition of Aerosol Particles from a Subway Microenvironment in the Human Respiratory Tract. J. Aerosol Sci., 90:103–113.
  • McMurry, P. H., Wang, X., Park, K., and Ehara, K. (2002). The Relationship Between Mass and Mobility for Atmospheric Particles: A New Technique for Measuring Particle Density. Aerosol Sci. Technol., 36:227–238.
  • Nosko, O., Borrajo-Pelaez, R., Hedström, P., and Olofsson, U. (2017). Porosity and Shape of Airborne Wear Microparticles Generated by Sliding Contact Between a Low-Metallic Friction Material and a Cast Iron. J. Aerosol Sci., 113:130–140.
  • Nosko, O. and Olofsson, U. (2017). Effective Density of Airborne Wear Particles from Car Brake Materials. J. Aerosol Sci., 107:94–106.
  • Olfert, J. S., Symonds, J. P. R., and Collings, N. (2007). The Effective Density and Fractal Dimension of Particles Emitted from a Light-Duty Diesel Vehicle with a Diesel Oxidation Catalyst. J. Aerosol Sci., 38:69–82.
  • Olofsson, U. (2011). A Study of Airborne Wear Particles Generated from the Train Traffic—Block Braking Simulation in a Pin-on-Disc Machine. Wear, 271:86–91.
  • Pagels, J., Gudmundsson, A., Gustavsson, E., Asking, L., and Bohgard, M. (2005). Evaluation of Aerodynamic Particle Sizer and Electrical Low-Pressure Impactor for Unimodal and Bimodal Mass-Weighted Size Distributions. Aerosol Sci. Technol., 39:871–887.
  • Park, K., Cao, F., Kittelson, D. B., and McMurry, P. H. (2003). Relationship Between Particle Mass and Mobility for Diesel Exhaust Particles. Environ. Sci. Technol., 37:577–583.
  • Pitz, M., Cyrys, J., Karg, E., Wiedensohler, A., Wichmann, H. E., and Heinrich, J. (2003). Variability of Apparent Particle Density of an Urban Aerosol. Environ. Sci. Technol., 37:4336–4342.
  • Pitz, M., Schmid, O., Heinrich, J., Birmili, W., Maguhn, J., Zimmermann, R., Wichmann, H. E., Peters, A., and Cyrys, J. (2008). Seasonal and Diurnal Variation of PM2.5 Apparent Particle Density in Urban Air in Augsburg, Germany. Environ. Sci. Technol., 42:5087–5093.
  • Price, H. D., Stahlmecke, B., Arthur, R., Kaminski, H., Lindermann, J., Däuber, E., Asbach, C., Kuhlbusch, T. A. J., BéruBé, K. A., and Jones, T. P. (2014). Comparison of Instruments for Particle Number Size Distribution Measurements in Air Quality Monitoring. J. Aerosol Sci., 76:48–55.
  • Quiros, D. C., Hu, S., Hu, S., Lee, E. S., Sardar, S., Wang, X., Olfert, J. S., Jung, H. S., Zhu, Y., and Huai, T. (2015). Particle Effective Density and Mass During Steady-State Operation of GDI, PFI, and Diesel Passenger Cars. J. Aerosol Sci., 83:39–54.
  • Rissler, J., Nordin, E. Z., Eriksson, A. C., Nilsson, P. T., Frosch, M., Sporre, M. K., Wierzbicka, A., Svenningsson, B., Löndahl, J., Messing, M. E., Sjogren, S., Hemmingsen, J. G., Loft, S., Pagels, J. H., and Swietlicki, E. (2014). Effective Density and Mixing State of Aerosol Particles in a Near-Traffic Urban Environment. Environ. Sci. Technol., 48:6300–6308.
  • Ristimäki, J., Virtanen, A., Marjamäki, M., Rostedt, A., and Keskinen, J. (2002). On-Line Measurement of Size Distribution and Effective Density of Submicron Aerosol Particles. J. Aerosol Sci., 33:1541–1557.
  • Spencer, M. T., Shields, L. G., and Prather, K. A. (2007). Simultaneous Measurement of the Effective Density and Chemical Composition of Ambient Aerosol Particles. Environ. Sci. Technol., 41:1303–1309.
  • Sundh, J. and Olofsson, U. (2011). Relating Contact Temperature and Wear Transitions in a Wheel–Rail Contact. Wear, 271:78–85.
  • Svensk standar (2014). Utsläpp och utomhusluft - Kvalitetssäkring av automatiska mätsystem. Available at https://sis.se/produkter/miljo-och-halsoskydd-sakerhet/luftkvalitet/ssen141812014/
  • Tsai, C. J., Wu, C. H., Leu, M. L., Chen, S. C., Huang, C. Y., Tsai, P. J., and Ko, F. H. (2009). Dustiness Test of Nanopowders Using a Standard Rotating Drum with a Modified Sampling Train. J. Nanoparticle Res., 11:121–131.
  • Virtanen, A., Ristimäki, J., and Keskinen, J. (2004). Method for Measuring Effective Density and Fractal Dimension of Aerosol Agglomerates. Aerosol Sci. Technol., 38:437–446.
  • Virtanen, A., Ristimaki, J., Marjamaki, M., Vaaraslahti, K., Keskinen, J., and Lappi, M. (2002). Effective Density of Diesel Exhaust Particles as a Function of Size. SAE Tech. Pap., 2002-01-0056. https://doi.org/10.4271/2002-01-0056
  • Wilson, W. E., Grover, B. D., Long, R. W., Eatough, N. L., and Eatough, D. J. (2006). The Measurement of Fine Particulate Semivolatile Material in Urban Aerosols. J. Air Waste Manag. Assoc., 56:384–397.
  • Zelenyuk, A., Cai, Y., and Imre, D. (2006). From Agglomerates of Spheres to Irregularly Shaped Particles: Determination of Dynamic Shape Factors from Measurements of Mobility and Vacuum Aerodynamic Diameters. Aerosol Sci. Technol., 40:197–217.