1,306
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Physicochemical properties and oxidative potential of fine particles produced from coal combustion

, , , , , , & show all
Pages 1134-1144 | Received 29 Jan 2018, Accepted 11 Jun 2018, Published online: 17 Aug 2018

References

  • Andreae, M. O., and A. Gelencsér. 2006. Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmos. Chem. Phys. 6 (10):3131–48.
  • Bates, J. T., R. J. Weber, J. Abrams, V. Verma, T. Fang, M. Klein, M. J. Strickland, S. E. Sarnat, H. H. Chang, J. A. Mulholland, et al. 2015. Reactive oxygen species generation linked to sources of atmospheric particulate matter and cardiorespiratory effects. Environ. Sci. Technol. 49:13605–12.
  • Batjargal, T., E. Otgonjargal, K. Baek, and J. S. Yang. 2010. Assessment of metals contamination of soils in Ulaanbaatar, Mongolia. J. Hazard. Mater. 184:872–76.
  • Batmunkh, T., Y. J. Kim, J. S. Jung, K. Park, and B. Tumendemberel. 2013. Chemical characteristics of fine particulate matters measured during severe winter haze events in Ulaanbaatar, Mongolia. J. Air Waste Manage. Assoc. 63 (6):659–70.
  • Bejarano, P. A., and Y. A. Levendis. 2008. Single-coal-particle combustion in O2/N2 and O2/CO2 environments. Combust. Flame 153:270–87.
  • Biswas, P., W. N. Wang, and W. J. An. 2011. The energy-environment nexus: Aerosol science and technology enabling solutions. Front. Environ. Sci. Eng. China 5 (3):299–312.
  • Bloomer, C., and G. Rehm. 2014. Using principal component analysis to find correlation and patterns at diamond light source. Proceedings of IPAC 2014, Dresden, Germany.
  • Bond, T. C., D. S. Covert, J. C. Kramlich, T. V. Larson, and R. J. Charlson. 2002. Primary particle emissions from residential coal burning: Optical properties and size distributions. J. Geophys. Res. Atmos. 107 (D21):ICC 9-1–14.
  • Buhre, B. J. P., J. T. Hinkley, R. P. Gupta, T. F. Wall, and P. F. Nelson. 2005. Submicron ash formation from coal combustion. Fuel 84 (10):1206–14.
  • Cao, G. L., X. Y. Zhang, and F. C. Zheng. 2006. Inventory of black carbon and organic carbon emissions from China. Atmos. Environ. 40:6516–27.
  • Cao, J., Q. Wang, J. C. Chow, J. G. Watson, X. Tie, Z. Shen, P. Wang, and Z. An. 2012. Impacts of aerosol compositions on visibility impairment in Xi’an, China. Atmos. Environ. 59:559–66.
  • Chang, Y. W., H. S. Joo, K. Park, and J. Y. Lee. 2017. Characteristics of chemical composition in carbonaceous aerosol of PM2.5 collected at smoke from coal combustion. J. Korean Soc. Atmos. Environ. 33 (3):265–76.
  • Charrier, J. G., and C. Anastasio. 2012. On dithiothreitol (DTT) as a measure of oxidative potential for ambient particles: Evidence for the importance of soluble transition metals. Atmos. Chem. Phys. 12 (19):9321–33.
  • Chen, Y., G. Sheng, X. Bi, Y. Feng, B. Mai, and J. Fu. 2005. Emission factors for carbonaceous particles and polycyclic aromatic hydrocarbons from residential coal combustion in China. Environ. Sci. Technol. 39:1861–1867.
  • Chen, Y., G. Zhi, Y. Feng, D. Liu, G. Zhang, J. Li, G. Sheng, and J. Fu. 2009. Measurements of black and organic carbon emission factors for household coal combustion in China: Implication for emission reduction. Environ. Sci. Technol. 43 (24):9495–500.
  • Dacombe, P., M. Pourkashanian, A. Williams, and L. Yap. 1999. Combustion-induced fragmentation behavior of isolated coal particles. Fuel 78 (15):1847–57.
  • Deng, J., X. Ma, Y. Zhang, Y. Li, and W. Zhu. 2015. Effects of pyrite on the spontaneous combustion of coal. Int. J. Coal Sci. Technol. 2 (4):306–11.
  • Dockery, D. W., and C. A. Pope. 1994. Acute respiratory effects of particulate air pollution. Annu. Rev. Public Health 15:107–32.
  • Fang, T., H. Guo, V. Verma, R. E. Peltier, and R. J. Weber. 2015. PM2.5 water-soluble elements in the southeastern United States: Automated analytical method development, spatiotemporal distributions, source apportionment, and implications for heath studies. Atmos. Chem. Phys. 15 (20):11667–82.
  • Furuya, K., Y. Miyajima, T. Chiba, and T. Kikuchi. 1987. Elemental characterization of particle size-density separated coal fly ash by spectrophotometry, inductively coupled plasma emission spectrometry, and scanning electron microscopy-energy dispersive X-ray analysis. Environ. Sci. Technol. 21:898–903.
  • Gao, Q., S. Li, Y. Yuan, Y. Zhao, and Q. Yao. 2016. Role of minerals in the evolution of fine particulate matter during pulverized coal combustion. Energy Fuels 30 (3):1815–21.
  • Gilmour, M. I., S. O’Connor, C. A. J. Dick, C. A. Miller, and W. P. Linak. 2004. Differential pulmonary inflammation and in vitro cytotoxicity of size-fractionated fly ash particles from pulverized coal combustion. Air Manage. Assoc. 54 (3):286–95.
  • Gustafsson, Ö., M. Kruså, Z. Zencak, R. J. Sheesley, L., Granat, E. Engström, P. S. Praveen, P. S. Rao, C. Leck, and H. Rodhe. 2009. Brown clouds over South Asia: Biomass or fossil fuel combustion? Science 323 (5913):495–8.
  • Hammond, C. R. 2003. Physical constants of inorganic compounds. In CRC handbook of chemistry and physics, ed. D. R. Lide, 39–96. 84th ed., Ch. 4. Boca Raton, FL: CRC.
  • Hegglin, M. I., U. K. Krieger, T. Koop, and T. Peter. 2002. Organics induced fluorescence in Raman studies of sulfuric acid aerosols. Aerosol Sci. Tech. 36 (4):510–12.
  • Hellack, B., A. Yang, F. R. Cassee, N. A. H. Janssen, R. P. F. Schins, and T. A. J. Kuhlbusch. 2014. Intrinsic hydroxyl radical generation measurements directly from sampled filters as a metric for the oxidative potential of ambient particulate matter. J. Aerosol Sci. 72:47–55.
  • Hennigan, C. J., J. Izumi, A. P. Sullivan, R. J. Weber, and A. Nenes. 2015. A critical evaluation of proxy methods used to estimate the acidity of atmospheric particles. Atmos. Chem. Phys. 15 (5):2775–15.
  • Hensley, K., K. A. Robinson, S. P. Gabbita, S. Salsman, and R. A. Floyd. 2000. Reactive oxygen species, cell signaling, and cell injury. Free Radic. Biol. Med. 28 (10):1456–62.
  • IPCC 2014. Climate change 2014: Impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge and New York.
  • Janhäll, S., M. O. Andreae, and U. Pöschl. 2010. Biomass burning aerosol emissions from vegetation fires: Particle number and mass emission factors and size distributions. Atmos. Chem. Phys. 10 (3):1427–39.
  • Kelly, F. J., and J. C. Fussell. 2016. Health effects of airborne particles in relation to composition, size and source. In Airborne particulate matter, ed. R. E. Hester and R. M. Harrison, 344–82. Cambridge: Royal Society of Chemistry.
  • Kim, M., C. Cho, Y. Jeon, J. Yang, H. Sin, and E. C. Jeon. 2016. Domestic bituminous coal’s calorific value trend analysis (2010–2014) and carbon emission factor development. J. Clim. Change Res. 7 (4):513–20.
  • Kuhns, H. D., C. Mazzoleni, H. Moosmüller, D. Nikolic, R. E. Keislar, P. W. Barber, Z. Li, V. Etyemezian, and J. G. Watson. 2004. Remote sensing of PM, NO, CO and HC emission factors for on-road gasoline and diesel engine vehicles in Las Vegas, NV. Sci. Total Environ. 322 (1–3):123–37.
  • Lee, K. Y., T. Batmunkh, H. S. Joo, and K. Park. 2018. Comparison of the physical and chemical characteristics of fine road dust at different urban sites. J. Air Waste Manage. Assoc. 68 (8):812–23.doi: 10.1080/10962247.2018.1443855.
  • Lenz, M., F. J. Müller, M. Zenke, and A. Schuppert. 2016. Principal components analysis and the reported low intrinsic dimensionality of gene expression microarray data. Sci. Rep. 6:25696. doi:10.1038/srep25696.
  • Li, S., S. Guo, X. Huang, T. Huang, I. Bibi, F. Muhammad, G. Xu, Z. Zhao, L. Yu, Y. Yan, et al. 2016c. Research on characteristics of heavy metals (As, Cd, Zn) in coal from southwest China and prevention method by using modified calcium-based materials. Fuel 186:714–25.
  • Li, Q., J. Jiang, Q. Zhang, W. Zhou, S. Cai, L. Duan, S. Ge, and J. Hao. 2016a. Influences of coal size, volatile matter content, and additive on primary particulate matter emissions from household stove combustion. Fuel 182:780–7.
  • Li, Q., X. Li, J. Jiang, L. Duan, S. Ge, Q. Zhang, J. Deng, S. Wang, and J. Hao. 2016b. Semi-coke briquettes: Towards reducing emissions of primary PM2.5, particulate carbon, and carbon monoxide from household coal combustion in China. Sci. Rep. 6 (1):19306.
  • Li, Q. F., A. Wyatt, and R. M. Kamens. 2009. Oxidant generation and toxicity enhancement of aged-diesel exhaust. Atmos. Environ. 43 (5):1037–42.
  • Lind, T., E. I. Kauppinen, W. Maenhaut, A. Shah, and F. Huggins. 1996. Ash vaporization in circulating fluidized bed coal combustion. Aerosol Sci. Technol. 24 (3):135–50.
  • Lippmann, M., K. Ito, J.-S. Hwang, P. Maciejczyk, and L.-C. Chen. 2006. Cardiovascular effects of nickel in ambient air. Environ. Health Perspect. 114 (11):1662–9.
  • Makino, H., and H. Matsuda. 2002. Improvement for pulverized coal combustion technology for power generation. Yokosuka, Japan: Central Research Institute of Electric Power Industry (CRIEPI), Yokosuka Research Laboratory. CRIEPI Rev. 46.
  • Nickel, C., H. Kaminski, B. Hellack, U. Quass, A. John, O. Klemm, and T. A. J. Kuhlbusch. 2013. Size resolved particle number emission factors of motorway traffic differentiated between heavy and light duty vehicles. Aerosol Air Qual. Res. 13:450–61.
  • Ohara, T., H. Akimoto, J. Kurokawa, N. Horii, K. Yamaji, X. Yan, and T. Hayasaka. 2007. An Asian emission inventory of anthropogenic emission sources for the period 1980–2020. Atmos. Chem. Phys. 7:4419–44.
  • Oros, D., and B. Simoneit. 2000. Identification and emission rates of molecular tracers in coal smoke particulate matter. Fuel 79 (5):515–36.
  • Park, M., H. S. Joo, K. Lee, M. Jang, S. D. Kim, I. Kim, L. J. S. Borlaza, H. Lim, H. Shin, K. H. Chung, et al. 2018. Differential toxicities of fine particulate matters from various sources. In preparation (submitted to Scientific Report).
  • Parsons, K. J., W. J. Cooper, and R. C. Albertson. 2009. Limits of principal components analysis for producing a common trait space: Implications for inferring selection, contingency, and chance in evolution. PLoS One 4 (11):e7957. doi:10.1371/journal.pone.0007957.
  • Peters, A., H. E. Wichmann, T. Tuch, J. Heinrich, and J. Heyder. 1997. Respiratory effects are associated with the number of ultrafine particles. Am. J. Respir. Crit. Care Med. 155 (4):1376–83.
  • Philip, M., D. A. Rowley, and H. Schreiber. 2004. Inflammation as a tumor promoter in cancer induction. Semin. Cancer Biol. 14 (6):433–9.
  • Popescu, F., and I. Ionel. 2010. Anthropogenic air pollution sources, air quality. In InTech, ed. A. Kumar. doi: 10.5772/9751. Accessed August 18, 2010. https://www.intechopen.com/books/air-quality/anthropogenic-air-pollution-sources
  • Raask, E. 1985. Mineral impurities in coal combustion - Behaviour, problems and remedial measures. Washington, DC: Hemisphere Publishing Corp.
  • Saxena, M., A. Sharma, A. Sen, P. Saxena, Y. Saraswati, T. K. Mandal, S. K. Sharma, and C Sharma. 2017. Water soluble inorganic species of PM10 and PM2.5 at an urban site of Delhi, India: Seasonal variability and sources. Atmos. Environ. 184:112–25.
  • Seames, W. S. 2003. An initial study of the fine fragmentation fly ash particle mode generated during pulverized coal combustion. Fuel Process. Technol. 81 (2):109–25.
  • Shen, G., S. Tao, S. Wei, Y. Zhang, R. Wang, B. Wang, W. Li, H. Shen, Y. Huang, Y. Chen, H., et al. 2012. Emissions of parent, nitro, and oxygenated polycyclic aromatic hydrocarbons from residential wood combustion in rural China. Environ. Sci. Technol. 46 (15):8123–30.
  • Shen, Z., J. Cao, R. Arimoto, Y. Han, C. Zhu, J. Tian, and S. Liu. 2010. Chemical characteristics of fine particles (PM1) from Xi’an, China. Aerosol Sci. Technol. 44 (6):461–72.
  • Shim, C., and J. Seo. 2013. Air quality issues associated with future domestic coal power planning and emission projection of East Asia. Policy report 2013–2014, Korea Environment Institute, Sejong, Korea.
  • Sidhu, S., J. Graham, and R. Striebich. 2001. Semi-volatile and particulate emissions from the combustion of alternative diesel fuels. Chemosphere 42 (5–7):681–90.
  • Solomon, P. R., T. H. Fletcher, and R. J. Pugmire. 1993. Progress in coal pyrolysis. Fuel 72 (5):587–97.
  • Stanger, R., and T. Wall. 2011. Sulphur impacts during pulverised coal combustion in oxy-fuel technology for carbon capture and storage. Prog. Energy Combust. Sci. 37:69–88.
  • Streets, D. G., T. C. Bond, G. R. Carmichael, S. D. Fernandes, Q. Fu, D. He, Z. Klimont, S. M. Nelson, N. Y. Tsai, M. Q. Wang, et al. 2003. An inventory of gaseous and primary aerosol emissions in Asia in the year 2000. J. Geophys. Res. 108 (D21):8809.
  • Streets, D. G., S. Gupta, S. T. Waldhoff, M. Q. Wang, T. C. Bond, and B. Yiyun. 2001. Black carbon emissions in China. Atmos. Environ. 35 (25):4281–96.
  • Sun, J., G. Zhi, R. Hitzenberger, Y. Chen, C. Tian, Y. Zhang, Y. Feng, M. Cheng, Y. Zhang, J. Cai, et al. 2017. Emission factors and light absorption properties of brown carbon, from household coal combustion in China. Atmos. Chem. Phys. 17 (7):4769–80.
  • Taylor, D. D., and R. C. Flagan. 1981. The influence of combustor operation on fine particles from coal combustion. Aerosol Sci. Technol. 1 (1):103–17.
  • Tuet, W. Y., S. Fok, V. Verma, M. S. Tagle Rodriguez, A. Grosberg, J. A. Champion, and N. L. Ng. 2016. Dose-dependent intracellular reactive oxygen and nitrogen species (ROS/RNS) production from particulate matter exposure: comparison to oxidative potential and chemical composition. Atmos. Environ. 144:335–344.
  • Wang, F., Z. Guo, T. Lin, and N. L. Rose. 2016b. Seasonal variation of carbonaceous pollutants in PM2.5 at an urban ‘supersite’ in Shanghai, China. Chemosphere 146:238–44.
  • Wang, F. F., C. M. Geng, W. D. Hao, Y. D. Zhao, Q. Li, H. M. Wang, and Y. Qian. 2016a. The cellular toxicity of PM2.5 emitted from coal combustion in human umbilical vein endothelial cells. Biomed. Environ. Sci. 29 (2):107–16.
  • Wang, P., B. Pan, H. Li, Y. Huang, X. Dong, F. Ai, L. Liu, M. Wu, and B. Xing. 2018. The overlooked occurrence of environmentally persistent free radicals in an area with low-rank coal burning, Xuanwei, China. Environ. Sci. Technol. 52 (3):1054–61.
  • Wang, X., B. J. Williams, X. Wang, Y. Tang, Y. Huang, L. Kong, X. Yang, and P. Biswas. 2013. Characterization of organic aerosol produced during pulverized coal combustion in a drop tube furnace. Atmos. Chem. Phys. 13 (21):10919–32.
  • Wang, Y., P. K. Hopke, D. C. Chalupa, and M. J. Utell. 2011. Effect of the shutdown of a coal-fired power plant on urban ultrafine particles and other pollutants. Aerosol Sci. Technol. 45 (10):1245–9.
  • Watson, J. G. 2002. Visibility: Science and regulation. J. Air Waste Manag. Assoc. 52 (6):628–713.
  • Weber, R. J., H. Guo, A. G. Russell, and A. Nenes. 2016. High aerosol acidity despite declining atmospheric sulfate concentrations over the past 15 years. Nature Geosci. 9 (4):282–5.
  • World Energy Council. 2013. World energy resources: 2013 survey. London: World Energy Council.
  • Yang, A., B. Hellack, D. Leseman, B. Brunekreef, T. A. J. Kuhlbusch, F. R. Cassee, G. Hoek, and N. A. H. Janssen. 2015. Temporal and spatial variation of the metal-related oxidative potential of PM2.5 and its relation to PM2.5 mass and elemental composition. Atmos. Environ. 102:62–9.
  • Yang, A., A. Jedynska, B. Hellack, I. Kooter, G. Hoek, B. Brunekreef, T. A. J. Kuhlbusch, F. R. Cassee, and N. A. H. Janssen. 2014. Measurement of the oxidative potential of PM2.5 and its constituents: The effect of extraction solvent and filter type. Atmos. Environ. 83:35–42.
  • Yoo, J. I., W. P. Linak, C. T. Shinagawa, H. N. Jang, M. I. Gilmour, and J. O. L. Wendt. 2006. Design and characterization of an ultrafine coal ash aerosol generator for direct animal exposure studies. In A and WM. 25th Annual International Conference on Incineration and Thermal Treatment Technologies, Savannah, GA, May 15–19, IT3(2):637-649.
  • Zhang, Y., J. J. Schauer, Y. Zhang, L. Zeng, Y. Wei, Y. Liu, and M. Shao. 2008. Characteristics of particulate carbon emissions from real-world Chinese coal combustion. Environ. Sci. Technol. 42 (14):5068–73.
  • Zhang, Y., and S. Tao. 2009. Global atmospheric emission inventory of polycyclic aromatic hydrocarbons (PAHs) for 2004. Atmos. Environ. 43 (4):812–9.
  • Zhi, G., Y. Chen, Y. Feng, S. Xiong, J. Li, G. Zhang, G. Sheng, and J. Fu. 2008. Emission characteristics of carbonaceous particles from various residential coal-stoves in China. Environ. Sci. Technol. 42 (9):3310–5.
  • Zhou, W., J. Jiang, L. Duan, and J. Hao. 2016. Evolution of submicrometer organic aerosols during a complete residential coal combustion process. Environ. Sci. Technol. 50 (14):7861–9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.