797
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

A single-pass RGB differential photoacoustic spectrometer (RGB-DPAS) for aerosol absorption measurement at 473, 532, and 671 nm

, , , &
Pages 94-105 | Received 25 Apr 2018, Accepted 01 Nov 2018, Published online: 20 Dec 2018

References

  • Allan, D. W. 1966. Statistics of atomic frequency standards. Proc. IEEE 54(2):221–230. doi: 10.1109/PROC.1966.4634.
  • Arnott, W. P., B. Zielinska, C. F. Rogers, J. Sagebiel, K. Park, J. Chow, H. Moosmüller, J. G. Watson, K. Kelly, D. Wagner, et al. 2005. Evaluation of 1047-nm photoacoustic instruments and photoelectric aerosol sensors in source-sampling of black carbon aerosol and particle-bound pAHs from gasoline and diesel powered vehicles. Environ. Sci. Technol. 39:5398–5406. doi: 10.1021/es049595e.
  • Arnott, W. P., H. Moosmu¨Ller, and J. W. Walker. 2000. Nitrogen dioxide and kerosene-flame soot calibration of photoacoustic instruments for measurement of light absorption by aerosols. Rev. Sci. Instrum. 71(12):4545–4552. doi: 10.1063/1.1322585.
  • Arnott, W. P., H. Moosmüller, P. J. Sheridan, J. A. Ogren, R. Raspet, W. V. Slaton, J. L. Hand, S. M. Kreidenweis, and J. L. Collett. 2003. Photoacoustic and filter-based ambient aerosol light absorption measurements: Instrument comparisons and the role of relative humidity. J. Geophys. Res: Atmos. 108:AAC 15-11–AAC 15-11. doi: 10.1029/2002JD002165.
  • Arnott, W. P., K. Hamasha, H. Moosmüller, P. J. Sheridan, and J. A. Ogren. 2005. Towards aerosol light-absorption measurements with a 7-wavelength aethalometer: Evaluation with a photoacoustic instrument and 3-wavelength nephelometer. Aerosol Sci. Technol. 39(1):17–29. doi: 10.1080/027868290901972.
  • Bacis, R., A. J. Bouvier, and J. M. Flaud. 1998. The ozone molecule: Electronic spectroscopy. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 54(1):17–34. doi: 10.1016/S1386-1425(97)00259-X.
  • Ball, S. M., and R. L. Jones. 2003. Broad-band cavity ring-down spectroscopy. Chem. Rev. 103(12):5239–5262. doi: 10.1021/cr020523k.
  • Baumgardner, D., O. Popovicheva, J. Allan, V. Bernardoni, J. Cao, F. Cavalli, J. Cozic, E. Diapouli, K. Eleftheriadis, P. J. Genberg, et al. 2012. Soot reference materials for instrument calibration and intercomparisons: A workshop summary with recommendations. Atmos. Meas. Tech. 5(8):1869–1887. doi: 10.5194/amt-5-1869-2012.
  • Bergstrom, R. W., P. Pilewskie, P. B. Russell, J. Redemann, T. C. Bond, P. K. Quinn, and B. Sierau. 2007. Spectral absorption properties of atmospheric aerosols. Atmos. Chem. Phys. 7(23):5937–5943. doi: 10.5194/acp-7-5937-2007.
  • Bluvshtein, N., J. M. Flores, Q. He, E. Segre, L. Segev, N. Hong, A. Donohue, J. N. Hilfiker, and Y. Rudich. 2017. Calibration of a multi-pass photoacoustic spectrometer cell using light-absorbing aerosols. Atmos. Meas. Tech. 10(3):1203–1213. doi: 10.5194/amt-10-1203-2017.
  • Bond, T. C., and R. W. Bergstrom. 2006. Light absorption by carbonaceous particles: An investigative review. Aerosol Sci. Technol. 40(1):27–67. doi: 10.1080/02786820500421521.
  • Brion, J., A. Chakir, J. Charbonnier, D. Daumont, C. Parisse, and J. Malicet. 1998. Absorption spectra measurements for the ozone molecule in the 350–830 nm region. J. Atmos. Chem. 30(2):291–299. doi: 10.1023/a:1006036924364.
  • Burkholder, J. B., and R. K. Talukdar. 1994. Temperature dependence of the ozone absorption spectrum over the wavelength range 410 to 760 nm. Geophys. Res. Lett. 21(7):581–584. doi: 10.1029/93GL02311.
  • Burrows, J. P., A. Dehn, B. Deters, S. Himmelmann, A. Richter, S. Voigt, and J. Orphal. 1998. Atmospheric remote-sensing reference data from GOME: Part I. Temperature-dependent absorption cross-sections of NO2 in the 231–794 nm range. J. Quant. Spectr. Radiat. Transfer 60(6):1025–1031. doi: 10.1016/S0022-4073(97)00197-0.
  • Burrows, J. P., A. Richter, A. Dehn, B. Deters, S. Himmelmann, S. Voigt, and J. Orphal. 1999. Atmospheric remote-sensing reference data from GOME: 2. Temperature-dependent absorption cross sections of O3 in the 231–794 nm range. J. Quantit. Spectrosc. Radiat. Transfer 61(4):509–517. doi: 10.1016/S0022-4073(98)00037-5.
  • Cappa, C. D., T. B. Onasch, P. Massoli, D. R. Worsnop, T. S. Bates, E. S. Cross, P. Davidovits, J. Hakala, K. L. Hayden, B. T. Jobson, et al. 2012. Radiative absorption enhancements due to the mixing state of atmospheric black carbon. Science 337(6098):1078–1081. doi: 10.1126/science.1223447.
  • Carslaw, K. S., O. Boucher, D. V. Spracklen, G. W. Mann, J. G. L. Rae, S. Woodward, and M. Kulmala. 2010. A review of natural aerosol interactions and feedbacks within the earth system. Atmos. Chem. Phys. 10(4):1701–1737. doi: 10.5194/acp-10-1701-2010.
  • Cremer, J. W., P. A. Covert, E. A. Parmentier, and R. Signorell. 2017. Direct measurement of photoacoustic signal sensitivity to aerosol particle size. J. Phys. Chem. Lett. 8(14):3398–3403. doi: 10.1021/acs.jpclett.7b01288.
  • Davies, N. W., M. I. Cotterell, C. Fox, K. Szpek, J. M. Haywood, and J. M. Langridge. 2018. On the accuracy of aerosol photoacoustic spectrometer calibrations using absorption by ozone. Atmos. Meas. Tech. 11(4):2313–2324. doi: 10.5194/amt-11-2313-2018.
  • Dyroff, C., A. Zahn, S. Sanati, E. Christner, A. Rauthe-Schöch, and T. J. Schuck. 2014. Tunable diode laser in-situ CH4 measurements aboard the CARIBIC passenger aircraft: Instrument performance assessment. Atmos. Meas. Tech. 7(3):743–755. doi: 10.5194/amt-7-743-2014.
  • Fischer, D. A., and G. D. Smith. 2018. A portable, four-wavelength, single-cell photoacoustic spectrometer for ambient aerosol absorption. Aerosol Sci. Technol. 52(4):393–406. doi: 10.1080/02786826.2017.1413231.
  • Gillis, K. A., D. K. Havey, and J. T. Hodges. 2010. Standard photoacoustic spectrometer: Model and validation using O2 A-band spectra. Rev. Sci. Instrum. 81(6):064902. doi: 10.1063/1.3436660.
  • Gysel, M., M. Laborde, A. A. Mensah, J. C. Corbin, A. Keller, J. Kim, A. Petzold, and B. Sierau. 2012. Technical note: The single particle soot photometer fails to reliably detect PALAS soot nanoparticles. Atmos. Meas. Tech. 5(12):3099–3107. doi: 10.5194/amt-5-3099-2012.
  • Haisch, C., P. Menzenbach, H. Bladt, and R. Niessner. 2012. A wide spectral range photoacoustic aerosol absorption spectrometer. Anal. Chem. 84(21):8941–8945. doi: 10.1021/ac302194u.
  • Hearn, A. G. 1961. The absorption of ozone in the ultra-violet and visible regions of the spectrum. Proc. Phys. Soc. 78(5):932. doi: 10.1088/0370-1328/78/5/340.
  • Knutson, E. O., and K. T. Whitby. 1975. Aerosol classification by electric mobility: Apparatus, theory, and applications. J. Aerosol Sci. 6(6):443–451. doi: 10.1016/0021-8502(75)90060-9.
  • Lack, D. A., E. R. Lovejoy, T. Baynard, A. Pettersson, and A. R. Ravishankara. 2006. Aerosol absorption measurement using photoacoustic spectroscopy: Sensitivity, calibration, and uncertainty developments. Aerosol Sci. Technol. 40(9):697–708. doi: 10.1080/02786820600803917.
  • Lack, D. A., M. S. Richardson, D. Law, J. M. Langridge, C. D. Cappa, R. J. McLaughlin, and D. M. Murphy. 2012. Aircraft instrument for comprehensive characterization of aerosol optical properties, part 2: Black and brown carbon absorption and absorption enhancement measured with photo acoustic spectroscopy. Aerosol Sci. Technol. 46(5):555–568. doi: 10.1080/02786826.2011.645955.
  • Langridge, J. M., M. S. Richardson, D. A. Lack, C. A. Brock, and D. M. Murphy. 2013. Limitations of the photoacoustic technique for aerosol absorption measurement at high relative humidity. Aerosol Sci. Technol. 47(11):1163–1173. doi: 10.1080/02786826.2013.827324.
  • Lewis, K., W. P. Arnott, H. Moosmüller, and C. E. Wold. 2008. Strong spectral variation of biomass smoke light absorption and single scattering albedo observed with a novel dual-wavelength photoacoustic instrument. J. Geophys. Res.: Atmos. 113:D16203. doi: 10.1029/2007JD009699.
  • Li, J., U. Parchatka, R. Königstedt, and H. Fischer. 2012. Real-time measurements of atmospheric CO using a continuous-wave room temperature quantum cascade laser based spectrometer. Opt. Express 20(7):7590–7601. doi: 10.1364/OE.20.007590.
  • Li, Z., X. Xia, M. Cribb, W. Mi, B. Holben, P. Wang, H. Chen, S.-C. Tsay, T. F. Eck, F. Zhao, et al. 2007. Aerosol optical properties and their radiative effects in Northern china. J. Geophys. Res.: Atmos. 112:D22S01. doi: 10.1029/2006JD007382.
  • Linke, C., I. Ibrahim, N. Schleicher, R. Hitzenberger, M. O. Andreae, T. Leisner, and M. Schnaiter. 2016. A novel single-cavity three-wavelength photoacoustic spectrometer for atmospheric aerosol research. Atmos. Meas. Tech. 9(11):5331–5346. doi: 10.5194/amt-9-5331-2016.
  • Liu, C., C. E. Chung, Y. Yin, and M. Schnaiter. 2018. The absorption ångström exponent of black carbon: From numerical aspects. Atmos. Chem. Phys. 18(9):6259–6273. doi: 10.5194/acp-18-6259-2018.
  • Miklós, A., and P. Hess. 2000. Modulated and pulsed photoacoustics in trace gas analysis. Anal. Chem. 72(1):30A–37A. doi: 10.1021/ac002681m.
  • Miklós, A., P. Hess, and Z. Bozóki. 2001. Application of acoustic resonators in photoacoustic trace gas analysis and metrology. Rev. Scient. Instr. 72(4):1937–1955. doi: 10.1063/1.1353198.
  • Molina, L. T., and M. J. Molina. 1986. Absolute absorption cross sections of ozone in the 185- to 350-nm wavelength range. J. Geophys. Res.: Atmos. 91(D13):14501–14508. doi: 10.1029/JD091iD13p14501.
  • Montilla, E., S. Mogo, V. Cachorro, J. Lopez, and A. de Frutos. 2011. Absorption, scattering and single scattering albedo of aerosols obtained from in situ measurements in the subarctic coastal region of Norway. Atmos. Chem. Phys. Discuss 2011:2161–2182. doi: 10.5194/acpd-11-2161-2011.
  • Moosmüller, H., and W. P. Arnott. 2009. Particle optics in the Rayleigh regime. J. Air Waste Manage. Assoc. 59:1028–1031. doi: 10.3155/1047-3289.59.9.1028.
  • Moosmüller, H., R. K. Chakrabarty, and W. P. Arnott. 2009. Aerosol light absorption and its measurement: A review. J. Quant. Spectr. Radiat. Transfer 110(11):844–878. doi: 10.1016/j.jqsrt.2009.02.035.
  • Murphy, D. M. 2009. The effect of water evaporation on photoacoustic signals in transition and molecular flow. Aerosol Sci. Technol. 43(4):356–363. doi: 10.1080/02786820802657392.
  • Nakayama, T., H. Suzuki, S. Kagamitani, Y. Ikeda, A. Uchiyama, and Y. Matsumi. 2015. Characterization of a three wavelength photoacoustic soot spectrometer (PASS-3) and a photoacoustic extinctiometer (PAX). J. Meteorol. Soc. Jpn. 93(2):285–308. doi: 10.2151/jmsj.2015-016.
  • Negusse, S., P. Händel, and P. Zetterberg. 2014. IEEE-STD-1057 three parameter sine wave fit for SNR estimation: Performance analysis and alternative estimators. IEEE Trans. Instrum. Meas. 63(6):1514–1523. doi: 10.1109/TIM.2013.2293226.
  • O’Keefe, A., and D. A. G. Deacon. 1988. Cavity ring‐down optical spectrometer for absorption measurements using pulsed laser sources. Rev. Sci. Instrum. 59:2544–2551. doi: 10.1063/1.1139895.
  • Onasch, T. B., A. Trimborn, E. C. Fortner, J. T. Jayne, G. L. Kok, L. R. Williams, P. Davidovits, and D. R. Worsnop. 2012. Soot particle aerosol mass spectrometer: Development, validation, and initial application. Aerosol Sci. Technol. 46(7):804–817. doi: 10.1080/02786826.2012.663948.
  • Osthoff, H. D., S. S. Brown, T. B. Ryerson, T. J. Fortin, B. M. Lerner, E. J. Williams, A. Pettersson, T. Baynard, W. P. Dubé, S. J. Ciciora, et al. 2006. Measurement of atmospheric NO2 by pulsed cavity ring-down spectroscopy. J. Geophys. Res.: Atmos. 111:D12305. doi: 10.1029/2005JD006942.
  • Radney, J. G., and C. D. Zangmeister. 2015. Measurement of gas and aerosol phase absorption spectra across the visible and near-IR using supercontinuum photoacoustic spectroscopy. Anal. Chem. 87(14):7356–7363. doi: 10.1021/acs.analchem.5b01541.
  • Raspet, R., W. V. Slaton, W. P. Arnott, and H. Moosmüller. 2003. Evaporation–condensation effects on resonant photoacoustics of volatile aerosols. J. Atmos. Oceanic Technol. 20(5):685–695. doi: 10.1175/1520-0426.
  • Russell, P. B., R. W. Bergstrom, Y. Shinozuka, A. D. Clarke, P. F. DeCarlo, J. L. Jimenez, J. M. Livingston, J. Redemann, O. Dubovik, and A. Strawa. 2010. Absorption angstrom exponent in AERONET and related data as an indicator of aerosol composition. Atmos. Chem. Phys. 10(3):1155–1169. doi: 10.5194/acp-10-1155-2010.
  • Scherer, J. J., J. B. Paul, A. O'Keefe, and R. J. Saykally. 1997. Cavity ringdown laser absorption spectroscopy: History, development, and application to pulsed molecular beams. Chem. Rev. 97(1):25–52. doi: 10.1021/cr930048d.
  • Sharma, N., I. J. Arnold, H. Moosmüller, W. P. Arnott, and C. Mazzoleni. 2013. Photoacoustic and nephelometric spectroscopy of aerosol optical properties with a supercontinuum light source. Atmos. Meas. Tech. 6(12):3501–3513. doi: 10.5194/amt-6-3501-2013.
  • Stier, P., J. H. Seinfeld, S. Kinne, and O. Boucher. 2007. Aerosol absorption and radiative forcing. Atmos. Chem. Phys. 7(19):5237–5261. doi: 10.5194/acp-7-5237-2007.
  • Tian, G., H. Moosmüller, and W. P. Arnott. 2009. Simultaneous photoacoustic spectroscopy of aerosol and oxygen A-band absorption for the calibration of aerosol light absorption measurements. Aerosol Sci. Technol. 43(11):1084–1090. doi: 10.1080/02786820903170972.
  • Vandaele, A. C., C. Hermans, S. Fally, M. Carleer, R. Colin, M.-F. Mérienne, A. Jenouvrier, and B. Coquart. 2002. High-resolution Fourier transform measurement of the NO2 visible and near-infrared absorption cross sections: Temperature and pressure effects. J. Geophys. Res.: Atmos. 107:ACH 3-1–ACH 3-12.
  • Voigt, S., J. Orphal, and J. P. Burrows. 2002. The temperature and pressure dependence of the absorption cross-sections of NO2 in the 250–800 nm region measured by fourier-transform spectroscopy. J. Photochem. Photobiol. A: Chem. 149(13):1–7. doi: 10.1016/S1010-6030(01)00650-5.
  • Werle, P., R. Mücke, and F. Slemr. 1993. The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS). Appl. Phys. B 57(2):131–139. doi: 10.1007/bf00425997.
  • Willis, M. D., A. K. Y. Lee, T. B. Onasch, E. C. Fortner, L. R. Williams, A. T. Lambe, D. R. Worsnop, and J. P. D. Abbatt. 2014. Collection efficiency of the soot-particle aerosol mass spectrometer (SP-AMS) for internally mixed particulate black carbon. Atmos. Meas. Tech. 7(12):4507–4516. doi: 10.5194/amt-7-4507-2014.
  • You, R., J. G. Radney, M. R. Zachariah, and C. D. Zangmeister. 2016. Measured wavelength-dependent absorption enhancement of internally mixed black carbon with absorbing and nonabsorbing materials. Environ. Sci. Technol. 50:7982–7990. doi: 10.1021/acs.est.6b01473.
  • Yu, Z., J. Assif, G. Magoon, P. Kebabian, W. Brown, W. Rundgren, J. Peck, R. Miake-Lye, D. Liscinsky, and B. True. 2017. Differential photoacoustic spectroscopic (DPAS)-based technique for PM optical absorption measurements in the presence of light absorbing gaseous species. Aerosol Sci. Technol. 51(12):1438–1447. doi: 10.1080/02786826.2017.1363866.
  • Zangmeister, C. D., and J. G. Radney. 2018. NIST interlaboratory study of aerosol absorption measurements using photoacoustic spectroscopy. Technical Note 1989. doi: 10.6028/NIST.TN.1989.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.