3,861
Views
63
CrossRef citations to date
0
Altmetric
Aerosol Research Letter

Universal relations between soot effective density and primary particle size for common combustion sources

&
Pages 485-492 | Received 20 Oct 2018, Accepted 23 Jan 2019, Published online: 15 Mar 2019

References

  • Bogarra, M. , J. M. Herreros , A. Tsolakis , A. P. E. York , P. J. Millington , and F. J. Martos . 2017. Impact of exhaust gas fuel reforming and exhaust gas recirculation on particulate matter morphology in gasoline direct injection engine. J. Aerosol Sci. 103:1–14. doi:10.1016/j.jaerosci.2016.10.001.
  • Dastanpour, R. , and S. N. Rogak . 2014. Observations of a correlation between primary particle and aggregate size for soot particles. Aerosol Sci. Technol. 48 (10):1043–1049. doi:10.1080/02786826.2014.955565.
  • Dastanpour, R. , S. N. Rogak , B. Graves , J. Olfert , M. L. Eggersdorfer , and A. M. Boies . 2016. Improved sizing of soot primary particles using mass-mobility measurements. Aerosol Sci. Technol. 50 (2):101–109. doi:10.1080/02786826.2015.1130796.
  • Dastanpour, R. , A. Momenimovahed , K. A. Thomson , J. Olfert , and S. N. Rogak . 2017. Variation of the optical properties of soot as a function of particle mass. Carbon 124 :201–211. doi:10.1016/j.carbon.2017.07.005.
  • Dickau, M. , J. Olfert , M. Stettler , A. Boies , A. Momenimovahed , K. Thomson , G. Smallwood , and M. Johnson . 2016. Methodology for quantifying the volatile mixing state of an aerosol. Aerosol Sci. Technol. 50 (8):759–772. doi:10.1080/02786826.2016.1185509.
  • Eggersdorfer, M. L. , A. J. Gröhn , C. M. Sorensen , P. H. McMurry , and S. E. Pratsinis . 2012. Mass-mobility characterization of flame-made ZrO2 aerosols: Primary particle diameter and extent of aggregation. J. Colloid Interface Sci. 387 (1):12–23. doi:10.1016/j.jcis.2012.07.078.
  • Forestieri, S. D. , T. M. Helgestad , A. T. Lambe , L. Renbaum-Wolff , D. A. Lack , P. Massoli , E. S. Cross , M. K. Dubey , C. Mazzoleni , J. S. Olfert , A. J. Sedlacek Iii , A. Freedman , P. Davidovits , T. B. Onasch , and C. D. Cappa . 2018. Measurement and modeling of the multiwavelength optical properties of uncoated flame-generated soot. Atmos. Chem. Phys. 18 (16):12141–12159. doi:10.5194/acp-18-12141-201
  • Frenklach, M . 2002. Reaction mechanism of soot formation in flames. Phys. Chem. Chem. Phys. 4 (11):2028–2037. doi:10.1039/b110045a.
  • Fujitani, Y. , K. Saitoh , Y. Kondo , A. Fushimi , A. Takami , K. Tanabe , and S. Kobayashi . 2016. Characterization of structure of single particles from various automobile engines under steady-state conditions. Aerosol Sci. Technol. 50 (10):1055–1067. doi:10.1080/02786826.2016.1218438.
  • Ghazi, R. , H. Tjong , A. Soewono , S. N. Rogak , and J. S. Olfert . 2013. Mass, mobility, volatility, and morphology of soot particles generated by a McKenna and inverted burner. Aerosol Sci. Technol. 47 (4):395–405. doi:10.1080/02786826.2012.755259.
  • Graves, B. , J. Olfert , B. Patychuk , R. Dastanpour , and S. Rogak . 2015. Characterization of particulate matter morphology and volatility from a compression-ignition natural gas direct-injection engine. Aerosol Sci. Technol. 49 (8):589–598. doi:10.1080/02786826.2015.1050482.
  • Graves, B. M. , C. R. Koch , and J. S. Olfert . 2017. Morphology and volatility of particulate matter emitted from a gasoline direct injection engine fuelled on gasoline and ethanol blends. J. Aerosol Sci. 105:166–178. doi:10.1016/j.jaerosci.2016.10.013.
  • Johnson, T. J. , J. S. Olfert , J. P. Symonds , M. Johnson , T. Rindlisbacher , J. J. Swanson , A. M. Boies , K. Thomson , G. Smallwood , D. Walters , Y. Sevcenco , A. Crayford , R. Dastanpour , S. N. Rogak , L. Durdina , Y. K. Bahk , B. Brem , and J. Wang . 2015. Effective density and mass-mobility exponent of aircraft turbine particulate matter. J. Propulsion Power 31 (2):573–582. doi:10.2514/1.B35367.
  • Kazemimanesh, M. , R. Dastanpour , A. Baldelli , A. Moallemi , K. A. Thomson , M. A. Jefferson , M. R. Johnson , S. N. Rogak , and J. S. Olfert . 2019. Size, effective density, morphology, and nano-structure of soot particles generated from buoyant turbulent diffusion flames. J. Aerosol Sci . 132:22–31. doi:10.1016/j.jaerosci.2019.03.005.
  • Leung, K. K. , E. G. Schnitzler , R. Dastanpour , S. N. Rogak , W. Jäger , and J. S. Olfert . 2017. Relationship between coating-induced soot aggregate restructuring and primary particle number. Environ. Sci. Technol. 51 (15):8376–8383. doi:10.1021/acs.est.7b01140.
  • McMurry, P. H. , X. Wang , K. Park , and K. Ehara . 2002. The relationship between mass and mobility for atmospheric particles: A new technique for measuring particle density. Aerosol Sci. Technol. 36 (2):227–238. doi:10.1080/027868202753504083.
  • Maricq, M. M. , and N. Xu . 2004. The effective density and fractal dimension of soot particles from premixed flames and motor vehicle exhaust. J. Aerosol Sci. 35 (10):1251–1274. doi:10.1016/j.jaerosci.2004.05.002.
  • Meakin, P . 1988. Fractal aggregates. Adv. Colloid Int. Sci. 28 (4):249–331. doi 10.1016/0001-8686(87)80016-7. doi:10.1016/0001-8686(87)80016-7.
  • Momenimovahed, A. , and J. S. Olfert . 2015. Effective density and volatility of particles emitted from gasoline direct injection vehicles and implications for particle mass measurement. Aerosol Sci. Technol. 49 (11):1051–1062. doi:10.1080/02786826.2015.1094181.
  • Olfert, J. S. , J. P. R. Symonds , and N. Collings . 2007. The effective density and fractal dimension of particles emitted from a light-duty diesel vehicle with a diesel oxidation catalyst. J. Aerosol Sci. 38 (1):69–82. doi:10.1016/j.jaerosci.2006.10.002.
  • Olfert, J. S. , M. Dickau , A. Momenimovahed , M. Saffaripour , K. Thomson , G. Smallwood , M. E. J. Stettler , A. Boies , Y. Sevcenco , A. Crayford , and M. Johnson . 2017. Effective density and volatility of particles sampled from a helicopter gas turbine engine. Aerosol Sci. Technol. 51 (6):704–714. doi:10.1080/02786826.2017.1292346.
  • Pagels, J. , A. F. Khalizov , P. H. McMurry , and R. Y. Zhang . 2009. Processing of soot by controlled sulphuric acid and water condensation mass and mobility relationship. Aerosol Sci. Technol. 43 (7):629–640. doi:10.1080/02786820902810685.
  • Rawat, V. , D. T. Buckley , S. Kimoto , M. H. Lee , N. Fukushima , and C. J. Hogan . 2016. Two dimensional size-mass distribution function inversion from differential mobility analyzer-aerosol particle mass analyzer (DMA-APM) measurements. J. Aerosol Sci. 92 :70–82. doi:10.1016/j.jaerosci.2015.11.001.
  • Rissler, J. , M. E. Messing , A. I. Malik , P. T. Nilsson , E. Z. Nordin , M. Bohgard , M. Sanati , and J. H. Pagels . 2013. Effective density characterization of soot agglomerates from various sources and comparison to aggregation theory. Aerosol Sci. Technol. 47 (7):792–805. doi:10.1080/02786826.2013.791381.
  • Sorensen, C. M . 2011. The mobility of fractal aggregates: A review. Aerosol Sci. Technol. 45(7):765–779. doi:10.1080/02786826.2011.560909.
  • Tavakoli, F. , and J. S. Olfert . 2014. Determination of particle mass, effective density, mass–mobility exponent, and dynamic shape factor using an aerodynamic aerosol classifier and a differential mobility analyzer in tandem. J. Aerosol Sci. 75 :35–42. doi:10.1016/j.jaerosci.2014.04.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.