563
Views
6
CrossRef citations to date
0
Altmetric
Articles

A numerical aerosol model Fractal Aggregate Moment Model (FAMM) to simulate simultaneous nucleation, coagulation, surface growth, and sintering of fractal aggregates

&
Pages 493-507 | Received 24 Aug 2018, Accepted 17 Dec 2018, Published online: 11 Mar 2019

References

  • Forrest, S. R., and T. A. Witten. 1979. Long-range correlations in smoke-particle aggregates. J. Phys. A Math. Gen. 12 (5):L109–L117. doi: 10.1088/0305-4470/12/5/008.
  • Gelbard, F. 1990. Modeling multicomponent aerosol particle growth by vapor condensation. Aerosol Sci. Technol. 12 (2):399–412. doi: 10.1080/02786829008959355.
  • Jacobson, M. Z. 1997. Development and application of a new air pollution modeling system—II. Aerosol module structure and design. Atmos. Environ. 31 (2):131–144. doi: 10.1016/1352-2310(96)00202-6.
  • Jeong, J. I., and M. Choi. 2003a. Analysis of non-spherical polydisperse particle growth in a two-dimensional tubular reactor. J. Aerosol Sci. 34 (6):713–732. doi: 10.1016/S0021-8502(03)00028-4.
  • Jeong, J. I., and M. Choi. 2004. A bimodal moment model for the simulation of particle growth. J. Aerosol Sci. 35 (9):1071–1090.
  • Jeong, J. I., and M. Choi. 2005. A bimodal particle dynamics model considering coagulation, Coalescence and surface growth, and its application to the growth of titania aggregates. J. Colloid Interface Sci. 281 (2):351–359.
  • Jeong, J. I., and M. Choi. 2001. A sectional method for the analysis of growth of polydisperse non-spherical particles undergoing coagulation and coalescence. J. Aerosol Sci. 32 (5):565–582.
  • Jeong, J. I., and M. Choi. 2003b. A simple bimodal model for the evolution of non-spherical particles undergoing nucleation, coagulation and coalescence. J. Aerosol Sci. 34 (8):965–976.
  • Kaplan, C. R., and J. W. Gentry. 1988. Agglomeration of chain-like combustion aerosols due to Brownian motion. Aerosol Sci Technol. 8: 11–28.
  • Kim, Y. P., and J. H. Seinfeld. 1990. Simulation of multicomponent aerosol condensation by the moving sectional method. J. Colloid Interface Sci. 135 (1):185–199. doi: 10.1016/0021-9797(90)90299-4.
  • Koch, W., and S. K. Friedlander. 1990. The effect of particle coalescence on the surface area of a coagulating aerosol. J. Colloid Interface Sci. 140 (2):419–427. doi: 10.1016/0021-9797(90)90362-R.
  • Lee, K. W., Y. J. Lee, and D. S. Han. 1997. The log-normal size distribution theory for Brownian coagulation in the low Knudsen number regime. J. Colloid Interface Sci. 188 (2):486–492. doi: 10.1006/jcis.1997.4773.
  • Matsoukas, T., and S. K. Friedlander. 1991. Dynamics of aerosol agglomerate formation. J. Colloid Interface Sci. 146 (2):495–506. doi: 10.1016/0021-9797(91)90213-R.
  • Megaridis, C. M., and R. A. Dobbins. 1990. Morphological description of flame-generated materials. Combust. Sci. Technol. 71 (1–3):95–109. doi: 10.1080/00102209008951626.
  • Mountain, R. D., G. W. Mulholland, and H. Baum. 1986. Simulation of aerosol agglomeration in the free molecular and continuum flow regimes. J. Colloid Interface Sci. 114 (1):67–81. doi: 10.1016/0021-9797(86)90241-9.
  • Nakaso, K., T. Fujimoto, T. Seto, M. Shimada, K. Okuyama, and M. M. Lunden. 2001. Size distribution change of titania nano-particle agglomerates generated by gas phase reaction, agglomeration, and sintering. Aerosol Sci. Technol. 35 (5):929–947. doi: 10.1080/02786820126857.
  • Park, S. H., and K. W. Lee. 2002. Change in particle size distribution of fractal agglomerates during Brownian coagulation in the free-molecule regime. J. Colloid Interface Sci. 246 (1):85–91. doi: 10.1006/jcis.2001.7946.
  • Park, S. H. 2018. A Semi-Analytical solution to Brownian coagulation of fractal aggregates valid for the entire particle size range. Particulate Sci. Technol. 1. doi: 10.1080/02726351.2017.1404516.
  • Park, Y.-K., S.-C. Jung, and S. H. Park. 2013. Development of a moment model for condensational obliteration of nanoparticle aggregates. J. Nanosci. Nanotechnol. 13 (3):2008–2011.
  • Park, S. H., and S. N. Rogak. 2004. A novel Fixed-Sectional model for the formation and growth of aerosol agglomerates. J. Aerosol Sci. 35 (11):1385–1404. doi: 10.1016/j.jaerosci.2004.05.010.
  • Park, S. H., and S. N. Rogak. 2003. A one-dimensional model for coagulation, sintering, and surface growth of aerosol agglomerates. Aerosol Sci. Technol. 37 (12):947–960.
  • Park, Y.-K., S.-C. Jung, and S. H. Park. 2011. Simulation of coagulation and sintering of Nano-Structured particles using the moment method. J. Nanosci. Nanotechnol. 11 (2):1664–1667.
  • Pratsinis, S. E. 1988. Simultaneous nucleation, condensation, and coagulation in aerosol reactors. J. Colloid Interface Sci. 124 (2):416–427. doi: 10.1016/0021-9797(88)90180-4.
  • Rogak, S. N., and R. C. Flagan. 1992. Coagulation of aerosol agglomerates in the transition regime. J. Colloid Interface Sci. 151 (1):203–224. doi: 10.1016/0021-9797(92)90252-H.
  • Samson, R. J., G. W. Mulholland, and J. W. Gentry. 1987. Structural analysis of soot agglomerates. Langmuir 3 (2):272–281. doi: 10.1021/la00074a022.
  • Schmidt-Ott, A. 1988. In situ measurement of the fractal dimensionality of ultrafine aerosol particles. Appl. Phys. Lett. 52:954–956.
  • Seinfeld, J. H., and S. N. Pandis. 1998. Atmospheric chemistry and physics: From air pollution to climate change. New York, NY: John Wiley & Sons, Inc.
  • Tsantilis, S., and S. E. Pratsinis. 2000. Evolution of primary and aggregate particle‐size distributions by coagulation and sintering. AIChE J. 46 (2):407–415. doi: 10.1002/aic.690460218.
  • Tsantilis, S., H. K. Kammler, and S. E. Pratsinis. 2002. Population balance modeling of flame synthesis of titania nanoparticles. Chem. Eng. Sci. 57 (12):2139–2156. doi: 10.1016/S0009-2509(02)00107-0.
  • Xiong, Y., and S. E. Pratsinis. 1993. Formation of agglomerate particles by coagulation and sintering—Part I. A two-dimensional solution of the population balance equation. J. Aerosol Sci. 24 (3):283–300. doi: 10.1016/0021-8502(93)90003-R.
  • Zhang, H. X., C. M. Sorensen, E. R. Ramer, B. J. Olivier, and J. F. Merklin. 1988. In situ optical structure factor measurements of an aggregating soot aerosol. Langmuir 4 (4):867–871. doi: 10.1021/la00082a015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.