951
Views
18
CrossRef citations to date
0
Altmetric
Articles

Electron tomography of soot for validation of 2D image processing and observation of new structural features

, &
Pages 575-582 | Received 24 Oct 2018, Accepted 30 Jan 2019, Published online: 18 Mar 2019

References

  • Adachi, K., S. H. Chung, and P. R. Buseck. 2010. Shapes of soot aerosol particles and implications for their effects on climate. J. Geophys. Res. Atmos. 115.
  • Adachi, K., S. H. Chung, H. Friedrich, and P. R. Buseck. 2007. Fractal parameters of individual soot particles determined using electron tomography: Implications for optical properties. J. Geophys. Res. Atmos. 112.
  • Amin, H. M., and A. Bennett, W. L. Roberts. 2018. Determining fractal properties of soot aggregates and primary particle size distribution in counterflow flames up to 10 atm. Proc. Combust. Inst. 37.
  • Batenburg, K. J., S. Bals, J. Sijbers, C. Kübel, P. Midgley, J. Hernandez, U. Kaiser, E. Encina, E. Coronado, and G. Van Tendeloo. 2009. 3D imaging of nanomaterials by discrete tomography. Ultramicroscopy 109 (6):730–740. doi: 10.1016/j.ultramic.2009.01.009.
  • Brugière, E., F. Gensdarmes, F. Ouf, J. Yon, and A. Coppalle. 2014. Increase in thermophoretic velocity of carbon aggregates as a function of particle size. J. Aerosol Sci. 76:87–97. doi: 10.1016/j.jaerosci.2014.06.007.
  • Brzostowski, M. A., and G. A. McMechan. 1992. 3D tomographic imaging of near-surface seismic velocity and attenuation. Geophysics 57 (3):396–403. doi: 10.1190/1.1443254.
  • Chandler, M. F., Y. Teng, and U. O. Koylu. 2007. Diesel engine particulate emissions: A comparison of mobility and microscopy size measurements. Proc. Combust. Inst. 31 (2):2971–2979. doi: 10.1016/j.proci.2006.07.200.
  • Chen, J., C. Li, Z. Ristovski, A. Milic, Y. Gu, M. S. Islam, S. Wang, J. Hao, H. Zhang, C. He, H. Guo, et al. 2017. A review of biomass burning: Emissions and impacts on air quality, health and climate in China. Sci. Total Environ. 579:1000–1034. doi: 10.1016/j.scitotenv.2016.11.025.
  • Dastanpour, R., J. M. Boone, and S. N. Rogak. 2016. Automated primary particle sizing of nanoparticle aggregates by tem image analysis. Powder Technol. 295:218–224. doi: 10.1016/j.powtec.2016.03.027.
  • Dastanpour, R., and S. N. Rogak. 2014. Observations of a correlation between primary particle and aggregate size for soot particles. Aerosol sci. Technol. 48 (10):1043–1049. doi: 10.1080/02786826.2014.955565.
  • De Temmerman, P. J., E. Verleysen, J. Lammertyn, J. Mast. 2014. Semi-automatic size measurement of primary particles in aggregated nanomaterials by transmission electron microscopy. Powder Technol. 261:191–200.
  • Eggersdorfer, M. L., D. Kadau, H. J. Herrmann, and S. E. Pratsinis. 2012. Aggregate morphology evolution by sintering: Number and diameter of primary particles. J. Aerosol Sci. 46:7–19. doi: 10.1016/j.jaerosci.2011.11.005.
  • Farias, T. L., Ü. Ö. Köylü, and M. D G. Carvalho. 1996. Effects of polydispersity of aggregates and primary particles on radiative properties of simulated soot. J. Quant. Spectrosc. Radiat. Transfer 55 (3):357–371. doi: 10.1016/0022-4073(95)00166-2.
  • Gray, R., G. Kanapilly, Y. Cheng, and R. Wolff. 1985. Image enhancement of aggregate aerosols by stereopsis. J. Aerosol sci. 16 (3):211–216. doi: 10.1016/0021-8502(85)90027-8.
  • Heinson, Y. W., J. B. Maughan, W. R. Heinson, A. Chakrabarti, and C. M. Sorensen. 2016. Light scattering q‐space analysis of irregularly shaped particles. J. Geophys. Res. Atmos. 121:682–691. doi: 10.1002/2015JD024171.
  • Jacob, M., T. Sanders, N. Bernier, A. Grenier, R. B. Pinheiro, F. Mazen, P. Bayle-Guillemaud, and Z. Saghi. 2018. Multivariate analysis and compressed sensing methods for spectroscopic electron tomography of semiconductor devices. Microsc. Microanal. 24 (S1):500–501. doi: 10.1017/S1431927618002994.
  • Kazemimanesh, M., A. Moallemi, K. Thomson, G. Smallwood, P. Lobo, J. S. Olfert. 2019. A novel miniature inverted-flame burner for the generation of soot nanoparticles. Aerosol Sci Technol. 53 (2):184–195. doi: 10.1080/02786826.2018.1556774.
  • Kook, S., and L. M. Pickett. 2012. Soot volume fraction and morphology of conventional, fischer-tropsch, coal-derived, and surrogate fuel at diesel conditions. SAE Int. J. Fuels Lubricants 5 (2):647–664. doi: 10.4271/2012-01-0678.
  • Kremer, J. R., N. M. David, R. J. McIntosh. 1996. Computer visualization of three-dimensional image data using IMOD. J Struct Biol. 116.1:71–76.
  • Lin, M., H. Lindsay, D. Weitz, R. Ball, R. Klein, and P. Meakin. 1989. Universality of fractal aggregates as probed by light scattering. Proc. R. Soc. Lond. A 423 (1864):71–87. doi: 10.1098/rspa.1989.0042.
  • Mackowski, D. W., R. A. Altenkirch, M. P. Menguc. 1990. Internal absorption cross sections in a stratified sphere. Appl Opt. 29 (10):1551–1559.
  • Meakin, P. 1987. Fractal aggregates. Adva Colloid Interface Sci. 28: 249–331.
  • Mendes, M. 2009. A hybrid fast algorithm for first arrivals tomography. Geophys. Prospect. 57 (5):803–809. doi: 10.1111/j.1365-2478.2008.00755.x.
  • Messaoudil, C., T. Boudier, C. O. S. Sorzano, and S. Marco. 2007. Tomoj: Tomography software for three-dimensional reconstruction in transmission electron microscopy. BMC Bioinformatics 8:288. doi: 10.1186/1471-2105-8-288.
  • Moran, J., J. Cuevas, F. Liu, J. Yon, and A. Fuentes. 2018. Influence of primary particle polydispersity and overlapping on soot morphological parameters derived from numerical tem images. Powder Technol. 330:67–79. doi: 10.1016/j.powtec.2018.02.008.
  • Nyeki, S., I. Colbeck. 1995. Fractal dimension analysis of single, in-situ, restructured carbonaceous aggregates. Aerosol Sci Technol. 23 (2):109–120.
  • Okariz, A., T. Guraya, M. Iturrondobeitia, and J. Ibarretxe. 2017. A methodology for finding the optimal iteration number of the sirt algorithm for quantitative electron tomography. Ultramicroscopy 173:36–46. doi: 10.1016/j.ultramic.2016.10.013.
  • Okyay, G., E. Héripré, T. Reiss, P. Haghi-Ashtiani, T. Auger, and F. Enguehard. 2016. Soot aggregate complex morphology: 3d geometry reconstruction by SEM tomography applied on soot issued from propane combustion. J. Aerosol Sci. 93:63–79. doi: 10.1016/j.jaerosci.2015.11.009.
  • Orhan, O., E. Haffner-Staton, A. La Rocca, and M. Fay. 2016. Characterisation of flame-generated soot and soot-in-oil using electron tomography volume reconstructions and comparison with traditional 2d-tem measurements. Tribology Int. 104:272–284. doi: 10.1016/j.triboint.2016.09.015.
  • Pandey, A., R. K. Chakrabarty, L. Liu, and M. I. Mishchenko. 2015. Empirical relationships between optical properties and equivalent diameters of fractal soot aggregates at 550 nm wavelength. Opt. Exp. 23 (24):A1354–A1362. doi: 10.1364/OE.23.0A1354.
  • Rösner, H., S. Parida, D. Kramer, C. Volkert, and J. Weissmüller. 2007. Reconstructing a nanoporous metal in three dimensions: An electron tomography study of dealloyed gold leaf. Adv. Eng. Mater. 9 (7):535–541. doi: 10.1002/adem.200700063.
  • Soewono, A., and S. N. Rogak. 2013. Morphology and optical properties of numerically simulated soot aggregates. Aerosol Sci. Technol. 47 (3):267–274. doi: 10.1080/02786826.2012.749972.
  • Tian, K., F. Liu, M. Yang, K. A. Thomson, D. R. Snelling, and G. J. Smallwood. 2007. Numerical simulation aided relative optical density analysis of tem images for soot morphology determination. Proc. Combust. Inst. 31 (1):861–868. doi: 10.1016/j.proci.2006.07.064.
  • Tian, K., K. A. Thomson, F. Liu, D. R. Snelling, G. J. Smallwood, and D. Wang. 2006. Determination of the morphology of soot aggregates using the relative optical density method for the analysis of tem images. Combust. Flame 144 (4):782–791. doi: 10.1016/j.combustflame.2005.06.017.
  • Toth, P. J. D., M. Ek, and H. Wiinikka. 2019. Real-time, in situ, atomic scale observation of soot oxidation. Carbon Press.
  • Van Poppel, L. H., H. Friedrich, J. Spinsby, S. H. Chung, J. H. Seinfeld, and P. R. Buseck. 2005. Electron tomography of nanoparticle clusters: Implications for atmospheric lifetimes and radiative forcing of soot. Geophys. Res. Lett. 32.
  • Wentzel, M., H. Gorzawski, K.-H. Naumann, H. Saathoff, and S. Weinbruch. 2003. Transmission electron microscopical and aerosol dynamical characterization of soot aerosols. J. Aerosol Sci. 34 (10):1347–1370. doi: 10.1016/S0021-8502(03)00360-4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.