685
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Evaluation of total and inhalable samplers for the collection of carbon nanotube and carbon nanofiber aerosols

, , &
Pages 958-970 | Received 12 Dec 2018, Accepted 29 Apr 2019, Published online: 30 May 2019

References

  • Aizenberg, V., K. Choe, S. A. Grinshpun, K. Willeke, and P. A. Baron. 2001. Evaluation of personal aerosol samplers challenged with large particles. J. Aerosol Sci. 32 (6):779–793. doi:10.1016/S0021-8502(00)00119-1.
  • Aizenberg, V., S. A. Grinshpun, K. Willeke, J. Smith, and P. A. Baron. 2000. Performance characteristics of the button personal inhalable aerosol sampler. Am. Ind. Hyg. Assoc. J. 61:398–404. doi:10.1080/15298660008984550.
  • American Conference of Governmental Industrial Hygienists (ACGIH) 1999. Threshold limit values for chemical substances and physical agents and biological exposure indices. Cincinnati, OH: ACGIH, p. 85.
  • Ashley, K., and M. Harper. 2013. Analytical performance issues closed-face filter cassette (CFC) sampling—Guidance on procedures for inclusion of material adhering to internal sampler surfaces. J. Occup. Environ. Hyg. 10 (3):D29–D33.
  • Babik, K. R., M. M. Dahm, K. H. Dunn, K. L. Dunn, and M. K. Schubauer-Berigan. 2018. Characterizing workforces exposed to current and emerging non-carbonaceous nanomaterials in the U.S. J. Occup. Envrion. Hyg. 15 (1):44–56. doi:10.1080/15459624.2017.1376252.
  • Baron, P. A., and G. J. Deye. 1990. Electrostatic effects in asbestos sampling I: experimental measurements. Am. Ind. Hyg. Assoc. J. 51 (2):51–62. doi:10.1080/15298669091369330.
  • Bartley, D. L. 1998. Inhalable aerosol samplers. Appl. Occup. Environ. Hyg. 13:274–278. doi:10.1080/1047322X.1998.10390082.
  • Bartley, D. L. 2001. Definition and assessment of sampling and analytical accuracy. Ann. Occup. Hyg. 45 (5):357–364.
  • Beard, J. D., A. Erdely, M. M. Dahm, M. A. de Perio, M. E. Birch, D. E. Evans, J. E. Fernback, T. Eye, V. Kodali, R. R. Mercer, et al. 2018. Carbon nanotube and nanofiber exposure and blood and sputum biomarkers of early effect among U.S. workers. Environ. Int. 116:214–228. doi:10.1016/j.envint.2018.04.004.
  • Birch, M. E., B. K. Ku, D. E. Evans, and T. A. Ruda-Eberenz. 2011. Exposure and emissions monitoring during carbon nanofiber production – part I: elemental carbon and iron-soot aerosols. Ann. Occup. Hyg. 55:1016–1036. doi:10.1093/annhyg/mer073.
  • Bishop, L., L. Cena, M. Orandle, N. Yanamala, M. M. Dahm, M. E. Birch, D. E. Evans, V. K. Kodali, T. Eye, L. Battelli, et al. 2017. In vivo toxicity assessment of occupational components of the carbon nanotube life cycle to provide context to potential health effects. ACS Nano 11 (9):8849–8863. doi:10.1021/acsnano.7b03038.
  • Boundy, M., D. Leith, and T. Polton. 2006. Method to evaluate the dustiness of pharmaceutical powders. Ann. Occup. Hyg. 50 (5):453–458. doi:10.1093/annhyg/mel004.
  • Brouwer, D., M. Berges, M. A. Virji, W. Fransman, D. Bello, L. Hodson, S. Gabriel, and E. Tielemans. 2012. Harmonization of measurement strategies for exposure to manufactured nanoobjects; report of a workshop. Ann. Occup. Hyg. 56:1–9. doi:10.1093/annhyg/mer099.
  • Comité Européen de Normalisation (CEN) 1993. Workplace atmospheres: size fraction definitions for measurements of airborne particles in the workplace (CEN standard EN 481). Brussels, Belgium.
  • Dahm, M. M., M. K. Schubauer-Berigan, D. E. Evans, M. E. Birch, S. Bertke, J. D. Beard, A. Erdely, J. E. Fernback, R. R. Mercer, and S. A. Grinshpun. 2018. Exposure assessments for a cross-sectional epidemiologic study of US carbon nanotube and nanofiber workers. Int. J. Hyg. Environ. Health 221 (3):429–440. doi:10.1016/j.ijheh.2018.01.006.
  • Dahm, M. M., S. Bertke, and M. K. Schubauer-Berigan. 2019. Predicting occupational exposures to carbon nanotubes and nanofibers based on workplace determinants modeling. Ann. Work Expo. Health 63 (2):158–172. doi:10.1093/annweh/wxy102.
  • Dahm, M. M., D. E. Evans, M. K. Schubauer-Berigan, M. E. Birch, and J. E. Fernback. 2012. Occupational exposure assessment in carbon nanotube and nanofiber primary and secondary manufacturers. Ann. Occup. Hyg. 56:542–556. doi:10.1093/annhyg/mer110.
  • Dahm, M. M., M. K. Schubauer-Berigan, D. E. Evans, M. E. Birch, J. E. Fernback, and J. A. Deddens. 2015. Carbon nanotube and nanofiber exposure assessments: an analysis of 14 site visits. Ann. Occup. Hyg. 59 (6):705–723. doi:10.1093/annhyg/mev020.
  • Demange, M., P. Görner, J. M. Elcabache, and R. Wrobel. 2002. Field comparison of 37-mm closed-face cassettes and IOM samplers. Appl. Occup. Environ. Hyg. 17 (3):200–208. doi:10.1080/104732202753438289.
  • Dubey, P., U. Ghia, and L. A. Turkevich. 2017. Computational fluid dynamics analysis of the venturi dustiness tester. Powder Technol. 312:310–320. doi:10.1016/j.powtec.2017.02.030.
  • Eastlake, A. C., C. Beaucham, K. F. Martinez, M. M. Dahm, C. Sparks, L. L. Hodson, and C. L. Geraci. 2016. Refinement of the nanoparticle emission assessment technique into the nanomaterial exposure assessment technique (NEAT 2.0). J. Occup. Envrion. Hyg. 13 (9):708–717. doi:10.1080/15459624.2016.1167278.
  • Ellenbecker, M., S. J. Tsai, M. Jacobs, M. Riediker, T. Peters, S. Liou, A. Avila, and S. FossHansen. 2018. The difficulties in establishing an occupational exposure limit for carbon nanotubes. J. Nanopart. Res. 20:131. https://doi.org/10.1007/s11051-018-4221-7
  • Evans, D. E., L. A. Turkevich, C. T. Roettgers, and G. J. Deye. 2014. Comment on comparison of powder dustiness methods. Ann. Occup. Hyg. 58:524–528. doi:10.1093/annhyg/meu039.
  • Evans, D. E., L. A. Turkevich, C. T. Roettgers, G. J. Deye, and P. A. Baron. 2013. Dustiness of fine and nanoscale powders. Ann. Occup. Hyg. 57 (2):261–277. doi:10.1093/annhyg/mes060.
  • Evans, D. E., B. K. Ku, M. E. Birch, and K. H. Dunn. 2010. Aerosol monitoring during carbon nanofiber production: mobile direct-reading sampling. Ann. Occup. Hyg. 54:514–531. doi:10.1093/annhyg/meq015.
  • Fatkhutdinova, L. M., T. O. Khaliullin, R. R. Zalyalov, A. G. Tkachev, M. E. Birch, and A. A. Shvedova. 2016a. Assessment of airborne multiwalled carbon nanotubes in a manufacturing environment. Nanotechnol. Russia 11 (1–2):110–116. doi:10.1134/S1995078016010055.
  • Fatkhutdinova, L. M., T. O. Khaliullin, O. L. Vasil’yeva, R. R. Zalyalov, I. G. Mustafin, E. R. Kisin, M. E. Birch, N. Yanamala, and A. A. Shvedova. 2016b. Fibrosis biomarkers in workers exposed to MWCNTs. Toxicol. Appl. Pharmacol. 15:125–131. doi:10.1016/j.taap.2016.02.016.
  • Han, J. H., E. J. Lee, J. H. Lee, K. P. So, Y. H. Lee, G. N. Bae, S. B. Lee, J. H. Ji, M. H. Cho, and I. J. Yu. 2008. Monitoring multiwalled carbon nanotube exposure in carbon nanotube research facility. Inhal. Toxicol. 20 (8):741–749. doi:10.1080/08958370801942238.
  • Harper, M., and B. S. Muller. 2002. An evaluation of total and inhalable samplers for the collection of wood dust in three wood products industries. J. Environ. Monit. 4 (5):648–656.
  • Hauck, B. C., S. A. Grinshpun, A. Reponen, T. Reponen, K. Willeke, and R. L. Bornschein. 1997. Field testing of new aerosol sampling method with a porous curved surface as inlet. Am. Ind. Hyg. Assoc. J. 58 (10):713–719. doi:10.1080/15428119791012351.
  • Hedmer, M., C. Isaxon, P. T. Nilsson, L. Ludvigsson, M. E. Messing, J. Genberg, V. Skaug, M. Bohgard, H. Tinnerberg, and J. H. Pagels. 2014. Exposure and emission measurements during production, purification, and functionalization of arc-discharge-produced multiwalled carbon nanotubes. Ann. Occup. Hyg. 58:355–379.
  • Hornung, R. W., and L. D. Reed. 1990. Estimation of average concentration in the presence of non-detectable values. Appl. Occup. Environ. Hyg. 5 (1):46–51. doi:10.1080/1047322X.1990.10389587.
  • International Organization for Standardization (ISO) 1995. Air quality-particle size fraction definitions for health-related sampling (ISO standard 7708). Geneva, Switzerland.
  • Kenny, L. C., R. J. Aitken, P. E. J. Baldwin, G. C. Beaumont, and A. D. Maynard. 1999. The sampling efficiency of personal inhalable aerosol samplers in low air movement environments. J. Aerosol Sci. 30 (5):627–638. doi:10.1016/S0021-8502(98)00752-6.
  • Kenny, L. C., R. Aitken, C. Chalmers, J. F. Fabries, E. Gonzalez-Fernandez, H. Kromhout, G. Liden, D. Mark, G. Riediger, and V. Prodi. 1997. A collaborative European study of personal inhalable aerosol sampler performance. Ann. Occup. Hyg. 41 (2):135–153. doi:10.1016/S0003-4878(96)00034-8.
  • Knudsen, K. B., T. Berthing, P. Jackson, S. S. Poulsen, A. Mortensen, N. R. Jacobsen, V. Skaug, J. Szarek, K. S. Hougaard, and H. Wolff. 2019. Physicochemical predictors of multi-walled carbon nanotube-induced pulmonary histopathology and toxicity one year after pulmonary deposition of 11 different multi-walled carbon nanotubes in mice. Basic Clin. Pharmacol. Toxicol. 124 (2):211–227. doi:10.1111/bcpt.13119
  • Kobayashi, N., H. Izumi, and Y. Morimoto. 2017. Review of toxicity studies of carbon nanotubes. J. Occup. Health 59 (5):394–407. doi:10.1539/joh.17-0089-RA.
  • Ku, B. K., and M. E. Birch. 2019. Aerosolization and characterization of carbon nanotube and nanofiber materials: relationship between aerosol properties and bulk density. J. Aerosol Sci. 127:38–48. doi:10.1016/j.jaerosci.2018.10.004.
  • Kuijpers, E., C. Bekker, W. Fransman, D. Brouwer, P. Tromp, J. Vlaanderen, L. Godderis, P. Hoet, Q. Lan, D. Silverman, et al. 2016. Occupational exposure to multi-walled carbon nanotubes during commercial production synthesis and handling. Ann. Occup. Hyg. 60 (3):305–317. doi:10.1093/annhyg/mev082.
  • Lee, J. S., Y. C. Choi, J. H. Shin, J. H. Lee, Y. Lee, S. Y. Park, J. E. Baek, J. D. Park, K. Ahn, and I. J. Yu. 2015. Health surveillance study of workers who manufacture multi-walled carbon nanotubes. Nanotoxicology 9 (6):802–811. doi:10.3109/17435390.2014.978404.
  • Lee, J. H., E. K. Sohn, J. S. Ahn, K. Ahn, K. S. Kim, J. H. Lee, T. M. Lee, and I. J. Yu. 2013. Exposure assessment of workers in printed electronics workplace. Inhal. Toxicol. 25 (8):426–434. doi:10.3109/08958378.2013.800617.
  • Lee, J. H., S.-B. Lee, G. N. Bae, K. S. Jeon, J. U. Yoon, J. H. Ji, J. H. Sung, B. G. Lee, J. H. Lee, J. S. Yang, et al. 2010. Exposure assessment of carbon nanotube manufacturing workplaces. Inhal. Toxicol. 22 (5):369–381. doi:10.3109/08958370903367359.
  • Liden, G., and J. Surakka. 2009. A headset-mounted mini sampler for measuring exposure to welding aerosol in the breathing zone. Ann. Occup. Hyg. 53 (2):99–116. doi:10.1093/annhyg/mep001.
  • L'Orange, C., K. Anderson, D. Sleeth, T. R. Anthony, and J. Volckens. 2016. A simple and disposable sampler for inhalable aerosol. Ann. Occup. Hyg. 60 (2):150–160. doi:10.1093/annhyg/mev065.
  • Maynard, A. D., P. A. Baron, M. Foley, A. A. Shvedova, E. R. Kisin, and V. Castranova. 2004. Exposure to carbon nanotube material: aerosol release during the handling of unrefined single-walled carbon nanotube material. J. Toxicol. Environ. Health 67 (1):87–107. doi:10.1080/15287390490253688.
  • Murray, A. R., E. R. Kisin, A. V. Tkach, N. Yanamala, R. Mercer, S. H. Young, B. Fadeel, V. E. Kagan, and A. A. Shvedova. 2012. Factoring-in agglomeration of carbon nanotubes and nanofibers for better prediction of their toxicity versus asbestos. Part. Fibre Toxicol. 9 (1):10. doi:10.1186/1743-8977-9-10.
  • NIOSH 2013. Current intelligence bulletin 65: occupational exposure to carbon nanotubes and nanofibers. Cincinnati, OH: US Department of Health and Human Services, Centers for Disease Control, National Institute for Occupational safety and Health. DHHS (NIOSH). Publication Number 2013–145.
  • NIOSH 2016. Manual of analytical methods. Method 5040 diesel particulate matter (as elemental carbon). In NIOSH method of analytical methods, ed. K. Ashley, P. F. O’Connor, 5th ed., Issue 2, 94–113. Cincinnati, OH: Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health. DHHS (NIOSH).
  • Ogura, I., H. Sakurai, K. Mizuno, and M. Gamo. 2011. Release potential of single-wall carbon nanotubes produced by super-growth method during manufacturing and handling. J. Nanopart. Res. 13 (3):1265–1280. doi:10.1007/s11051-010-0119-8.
  • Ramachandran, G., M. Ostraat, D. E. Evans, M. M. Methner, P. O'Shaughnessy, J. D'Arcy, C. L. Geraci, E. Stevenson, A. Maynard, and K. Rickabaugh. 2011. A strategy for assessing workplace exposures to nanomaterials. J. Occup. Envrion. Hyg. 8 (11):673–685. doi:10.1080/15459624.2011.623223.
  • Schubauer-Berigan, M. K., M. M. Dahm, A. Erdely, J. D. Beard, M. E. Birch, D. E. Evans, J. E. Fernback, R. R. Mercer, S. J. Bertke, T. Eye, et al. 2018. Association of pulmonary, cardiovascular, and hematologic metrics with carbon nanotube and nanofiber exposure among U.S. workers: a cross-sectional study. Part. Fibre Toxicol. 15:22.
  • Schubauer-Berigan, M. K., M. M. Dahm, and M. S. Yencken. 2011. Engineered carbonaceous nanomaterials manufacturers in the United States: workforce size, characteristics, and feasibility of epidemiologic studies. J. Occup. Envrion. Med. 53:S62–S67. doi:10.1097/JOM.0b013e31821b1e2c.
  • Shvedova, A. A., N. Yanamala, E. R. Kisin, T. O. Khailullin, M. E. Birch, and L. M. Fatkhutdinova. 2016. Integrated analysis of dysregulated ncRNA and mRNA expression profiles in humans exposed to carbon nanotubes. PLoS ONE 11 (3):e0150628. doi:10.1371/journal.pone.0150628.
  • Vincent, J. H. 2006. Testing personal inhalable aerosol samplers: a suggested improved protocol based on new scientific knowledge. J. Environ. Monit. 8 (1):53–62. doi:10.1039/B509222A.
  • Wang, Z. L., R. P. Gao, P. Poncharal, W. A. de Heer, Z. R. Dai, and Z. W. Pan. 2001. Mechanical and electrostatic properties of carbon nanotubes and nanowires. Mater. Sci. Eng. C. 16 (1–2):3–10. doi:10.1016/S0928-4931(01)00293-4.
  • Willeke, K., and P. A. Baron. 1990. Sampling and interpretation errors in aerosol monitoring. Am. Ind. Hyg. Assoc. J. 51 (3):160–168. doi:10.1080/15298669091369484.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.