1,509
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Re-aerosolization in liquid-based air samplers induces bias in bacterial diversity

, , & ORCID Icon
Pages 1244-1260 | Received 30 Apr 2019, Accepted 23 Jul 2019, Published online: 16 Aug 2019

References

  • An, H. R., G. Mainelis, and L. White. 2006. Development and calibration of real-time PCR for quantification of airborne microorganisms in air samples. Atmos. Environ. 40 (40):7924–7939. doi: 10.1016/j.atmosenv.2006.07.020.
  • Agranovski, I. E., V. Agranovski, S. A. Grinshpun, T. Reponen, and K. Willeke. 2002. Collection of airborne microorganisms into liquid by bubbling through porous medium. Aerosol Sci. Technol. 36 (4):502–509. doi: 10.1080/027868202753571322.
  • Agranovski, I. E., A. S. Safatov, A. I. Borodulin, O. V. Pyankov, V. A. Petrishchenko, A. N. Sergeev, A. A. Sergeev, V. Agranovski, and S. A. Grinshpun. 2005. New personal sampler for viable airborne viruses: Feasibility study. J. Aerosol Sci. 36 (5–6):609–617. doi: 10.1016/j.jaerosci.2004.11.014.
  • Ahmed, M. F. E., J. Schulz, and J. Hartung. 2013. Air samplings in a Campylobacter jejuni positive laying hen flock. Ann. Agric. Environ. Med. 20:16–20.
  • Amato, P., M. Joly, C. Schaupp, E. Attard, O. Mohler, C. E. Morris, Y. Brunet, and A. M. Delort. 2015. Survival and ice nucleation activity of bacteria as aerosols in a cloud simulation chamber. Atmos. Chem. Phys. 15 (11):6455–6465. doi: 10.5194/acp-15-6455-2015.
  • Audrain, B., M. A. Farag, C. M. Ryu, and J. M. Ghigo. 2015. Role of bacterial volatile compounds in bacterial biology. FEMS Microbiol. Rev. 39 (2):222–233. doi: 10.1093/femsre/fuu013.
  • Bach, H. J., J. Tomanova, M. Schloter, and J. C. Munch. 2002. Enumeration of total bacteria and bacteria with genes for proteolytic activity in pure cultures and in environmental samples by quantitative PCR mediated amplification. J. Microbiol. Methods 49 (3):235–245. doi: 10.1016/S0167-7012(01)00370-0.
  • Blanchard, D. C. 1978. Jet drop enrichment of bacteria, virus, and dissolved organic material. Pure Appl. Geophys. 116 (2–3):302–308. doi: 10.1007/BF01636887.
  • Blanchard, D. C., and L. D. Syzdek. 1972. Concentration of bacteria in jet drops from bursting bubbles. J. Geophys. Res. 77 (27):5087. doi: 10.1029/JC077i027p05087.
  • Blanchard, D. C., and L. Syzdek. 1970. Mechanism for the water-to-air transfer and concentration of bacteria. Science. 170 (3958):626. doi: 10.1126/science.170.3958.626.
  • Bonifait, L., G. Marchand, M. Veillette, H. M’Bareche, M. E. Dubuis, C. Pepin, Y. Cloutier, Y. Bernard, and C. Duchaine. 2017. Workers’ exposure to bioaerosols from three different types of composting facilities. J. Occup. Environ. Hyg. 14 (10):815–822. doi: 10.1080/15459624.2017.1335054.
  • Borecka-Melkusova, S., and H. Bujdakova. 2008. Variation of cell surface hydrophobicity and biofilm formation among genotypes of Candida albicans and Candida dubliniensis under antifungal treatment. Can. J. Microbiol. 54:718–724.
  • Bouchez, T., A. L. Blieux, S. Dequiedt, I. Domaizon, A. Dufresne, S. Ferreira, J. J. Godon, J. Hellal, C. Joulian, A. Quaiser, F. Martin-Laurent, A. Mauffret, J. M. Monier, P. Peyret, P. Schmitt-Koplin, O. Sibourg, E. D’oiron, A. Bispo, I. Deportes, C. Grand, P. Cuny, P. A. Maron, and L. Ranjard. 2016. Molecular microbiology methods for environmental diagnosis. Environ. Chem. Lett. 14 (4):423–441. doi: 10.1007/s10311-016-0581-3.
  • Brisebois, E., M. Veillette, V. Dion-Dupont, J. Lavoie, J. Corbeil, A. Culley, and C. Duchaine. 2018. Human viral pathogens are pervasive in wastewater treatment center aerosols. J. Environ. Sci. 67:45–53. doi: 10.1016/j.jes.2017.07.015.
  • Bujdakova, H., M. Didiasova, H. Drahovska, and L. Cernakova. 2013. Role of cell surface hydrophobicity in Candida albicans biofilm. Central Eur. J. Biol. 8:259–262.
  • Burrows, S. M., W. Elbert, M. G. Lawrence, and U. Poschl. 2009. Bacteria in the global atmosphere - Part 1: Review and synthesis of literature data for different ecosystems. Atmos. Chem. Phys. 9 (23):9263–9280. doi: 10.5194/acp-9-9263-2009.
  • Caporaso, J. G., J. Kuczynski, J. Stombaugh, K. Bittinger, F. D. Bushman, E. K. Costello, N. Fierer, A. G. Peña, J. K. Goodrich, J. I. Gordon, G. A. Huttley, S. T. Kelley, D. Knights, J. E. Koenig, R. E. Ley, C. A. Lozupone, D. McDonald, B. D. Muegge, M. Pirrung, J. Reeder, J. R. Sevinsky, P. J. Turnbaugh, W. A. Walters, J. Widmann, T. Yatsunenko, J. Zaneveld, and R. Knight. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7 (5):335–336. doi: 10.1038/nmeth.f.303.
  • Carvalho, E., C. Sindt, A. Verdier, C. Galan, L. O’Donoghue, S. Parks, and M. Thibaudon. 2008. Performance of the coriolis air sampler, a high-volume aerosol-collection system for quantification of airborne spores and pollen grains. Aerobiologia 24 (4):191–201. doi: 10.1007/s10453-008-9098-y.
  • Cayer, M. P., M. Veillette, P. Pageau, R. Hamelin, M. J. Bergeron, A. Meriaux, Y. Cormier, and C. Duchaine. 2007. Identification of mycobacteria in peat moss processing plants: Application of molecular biology approaches. Can. J. Microbiol. 53 (1):92–99. doi: 10.1139/w06-105.
  • Coccia, A. M., P. M. B. Gucci, I. Lacchetti, R. Paradiso, and F. Scaini. 2010. Airborne microorganisms associated with waste management and recovery: Biomonitoring methodologies. Annali Dell Istituto Superiore Di Sanita 46:288–292.
  • Comeau, A. M., W. K. W. Li, J. E. Tremblay, E. C. Carmack, and C. Lovejoy. 2011. Arctic ocean microbial community structure before and after the 2007 record sea ice minimum. PLos One 6 (11):e27492. doi: 10.1371/journal.pone.0027492.
  • Dahlback, B., M. Hermansson, S. Kjelleberg, and B. Norkrans. 1981. The hydrophobicity of bacteria – an important factor in their initial adhesion at the air-water interface. Arch. Microbiol. 128:267–270. doi: 10.1007/BF00422527.
  • Di Ciccio, P., A. Vergara, A. R. Festino, D. Paludi, E. Zanardi, S. Ghidini, and A. Ianieri. 2015. Biofilm formation by Staphylococcus aureus on food contact surfaces: Relationship with temperature and cell surface hydrophobicity. Food Control 50:930–936. doi: 10.1016/j.foodcont.2014.10.048.
  • Dickson, J. S., and M. Koohmaraie. 1989. Cell-surface charge characteristics and their relationship to bacterial attachment to meat surfaces. Appl. Environ. Microbiol. 55:832–836.
  • Doyle, R. J. 2000. Contribution of the hydrophobic effect to microbial infection. Microbes Infect. 2 (4):391–400. doi: 10.1016/S1286-4579(00)00328-2.
  • Duchaine, C., P. S. Thorne, A. Meriaux, Y. Grimard, P. Whitten, and Y. Cormier. 2001. Comparison of endotoxin exposure assessment by bioaerosol impinger and filter-sampling methods. Appl. Environ. Microbiol. 67 (6):2775–2780. doi: 10.1128/AEM.67.6.2775-2780.2001.
  • Dungan, R. S., and A. B. Leytem. 2016. Recovery of culturable Escherichia coli O157:H7 during operation of a liquid-based bioaerosol sampler. Aerosol Sci. Technol. 50 (1):71–75. doi: 10.1080/02786826.2015.1126666.
  • Dybwad, M., G. Skogan, and J. M. Blatny. 2014. Comparative testing and evaluation of nine different air samplers: End-to-End sampling efficiencies as specific performance measurements for bioaerosol applications. Aerosol Sci. Technol. 48 (3):282–295. doi: 10.1080/02786826.2013.871501.
  • Edgar, R. C., B. J. Haas, J. C. Clemente, C. Quince, and R. Knight. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27 (16):2194–2200. doi: 10.1093/bioinformatics/btr381.
  • Gomez-Domenech, M., H. Garcia-Mozo, P. Alcazar, R. Brandao, E. Caeiro, V. Munhoz, and C. Galan. 2010. Evaluation of the efficiency of the coriolis air sampler for pollen detection in South Europe. Aerobiologia 26:149–155. doi: 10.1007/s10453-009-9152-4.
  • Greiner, O., P. J. R. Day, M. Altwegg, and D. Nadal. 2003. Quantitative detection of Moraxella catarrhalis in nasopharyngeal secretions by real-time PCR. J. Clin. Microbiol. 41 (4):1386–1390. doi: 10.1128/JCM.41.4.1386-1390.2003.
  • Griffin, D. W., C. Gonzalez, N. Teigell, T. Petrosky, D. E. Northup, and M. Lyles. 2011. Observations on the use of membrane filtration and liquid impingement to collect airborne microorganisms in various atmospheric environments. Aerobiologia 27 (1):25–35. doi: 10.1007/s10453-010-9173-z.
  • Grinshpun, S. A., K. Willeke, V. Ulevicius, A. Juozaitis, S. Terzieva, J. Donnelly, G. N. Stelma, and K. P. Brenner. 1997. Effect of impaction, bounce and reaerosolization on the collection efficiency of impingers. Aerosol Sci. Technol. 26 (4):326–342. doi: 10.1080/02786829708965434.
  • Haarman, M., and J. Knol. 2006. Quantitative real-time PCR analysis of fecal lactobacillus species in infants receiving a prebiotic infant formula. Appl. Environ. Microbiol. 72 (4):2359–2365. doi: 10.1128/AEM.72.4.2359-2365.2006.
  • Haig, C. W., W. G. Mackay, J. T. Walker, and C. Williams. 2016. Bioaerosol sampling: Sampling mechanisms, bioefficiency and field studies. J. Hospital Infect. 93 (3):242–255. doi: 10.1016/j.jhin.2016.03.017.
  • Hamadi, F., H. Latrache, M. Mabrrouki, A. Elghmari, A. Outzourhit, M. Ellouali, and A. Chtaini. 2005. Effect of pH on distribution and adhesion of Staphylococcus aureus to glass. J. Adhes. Sci. Technol. 19 (1):73–85. doi: 10.1163/1568561053066891.
  • Han, T. W., and G. Mainelis. 2012. Investigation of inherent and latent internal losses in liquid-based bioaerosol samplers. J. Aerosol Sci. 45:58–68. doi: 10.1016/j.jaerosci.2011.11.001.
  • Henningson, E. W., and M. S. Ahlberg. 1994. Evaluation of microbiological aerosol samplers – a review. J. Aerosol Sci. 25 (8):1459–1492. doi: 10.1016/0021-8502(94)90219-4.
  • Hermann, J. R., S. J. Hoff, K. J. Yoon, A. C. Burkhardt, R. B. Evans, and J. J. Zimmerman. 2006. Optimization of a sampling system for recovery and detection of airborne porcine reproductive and respiratory syndrome virus and swine influenza virus. Appl. Environ. Microbiol. 72 (7):4811–4818. doi: 10.1128/AEM.00472-06.
  • Hogan, C. J., E. M. Kettleson, M. H. Lee, B. Ramaswami, L. T. Angenent, and P. Biswas. 2005. Sampling methodologies and dosage assessment techniques for submicrometre and ultrafine virus aerosol particles. J. Appl. Microbiol. 99 (6):1422–1434. doi: 10.1111/j.1365-2672.2005.02720.x.
  • Hoisington, A. J., J. P. Maestre, M. D. King, J. A. Siegel, and K. A. Kinney. 2014. Impact of sampler selection on the characterization of the indoor microbiome via high-throughput sequencing. Build. Environ. 80:274–282.
  • Juozaitis, A., K. Willeke, S. A. Grinshpun, and J. Donnelly. 1994. Impaction onto a glass slide or agar versus impingement into a liquid for the collection and recovery of airborne microorganisms. Appl. Environ. Microbiol. 60 (3):861–870.
  • Kesavan, J., and J. L. Sagripanti. 2015. Evaluation criteria for bioaerosol samplers. Environ. Sci. Process. Impacts 17:638–645. doi: 10.1039/C4EM00510D.
  • Kesavan, J., D. Schepers, and A. R. McFarland. 2010. Sampling and retention efficiencies of Batch-Type Liquid-Based bioaerosol samplers. Aerosol Sci. Technol. 44 (10):817–829. doi: 10.1080/02786826.2010.497513.
  • Kim, S. Y., Z. Y. Kim, S. Lee, and G. Ko. 2011. Comparison of molecular and total ATP-based analytical methods with culture for the analysis of bioaerosols. Sci. Total Environ. 409 (9):1732–1737. doi: 10.1016/j.scitotenv.2011.01.035.
  • King, M. D., and A. R. McFarland. 2012. Bioaerosol sampling with a wetted wall cyclone: Cell culturability and DNA integrity of Escherichia coli bacteria. Aerosol Sci. Technol. 46 (1):82–93. doi: 10.1080/02786826.2011.605400.
  • Kjelleberg, S., and M. Hermansson. 1984. Starvation-induced effects of bacterial surface characteristics. Appl. Environ. Microbiol. 48:497–503.
  • Krasowska, A., and K. Sigler. 2014. How microorganisms use hydrophobicity and what does this mean for human needs? Front. Cell Infect. Microbiol. 4:112.doi: 10.3389/fcimb.2014.00112.
  • Lam, H., D. C. Oh, F. Cava, C. N. Takacs, J. Clardy, M. A. de Pedro, and M. K. Waldor. 2009. D-Amino acids govern stationary phase cell wall remodeling in bacteria. Science 325 (5947):1552–1555. doi: 10.1126/science.1178123.
  • Langer, V., G. Hartmann, R. Niessner, and M. Seidel. 2012. Rapid quantification of bioaerosols containing L. pneumophila by coriolis®μ air sampler and chemiluminescence antibody microarrays. J. Aerosol Sci. 48:46–55. doi: 10.1016/j.jaerosci.2012.02.001.
  • Lecours, P. B., M. Veillette, D. Marsolais, and C. Duchaine. 2012. Characterization of bioaerosols from dairy barns: Reconstructing the puzzle of occupational respiratory diseases by using molecular approaches. Appl. Environ. Microbiol. 78:3242–3248. doi: 10.1128/AEM.07661-11.
  • Letourneau, V., A. Meriaux, N. Goyer, J. Chakir, Y. Cormier, and C. Duchaine. 2010a. Biological activities of respirable dust from Eastern Canadian peat moss factories. Toxicol. Vitro 24:1273–1278. doi: 10.1016/j.tiv.2010.03.019.
  • Letourneau, V., B. Nehme, A. Meriaux, D. Masse, and C. Duchaine. 2010b. Impact of production systems on swine confinement buildings bioaerosols. J. Occup. Environ. Hyg. 7:94–102. doi: 10.1080/15459620903425642.
  • Lin, X. J., T. A. Reponen, K. Willeke, S. A. Grinshpun, K. K. Foarde, and D. S. Ensor. 1999. Long-term sampling of airborne bacteria and fungi into a non-evaporating liquid. Atmos. Environ. 33 (26):4291–4298. doi: 10.1016/S1352-2310(99)00169-7.
  • Lin, X. J., T. Reponen, K. Willeke, Z. Wang, S. A. Grinshpun, and M. Trunov. 2000. Survival of airborne microorganisms during swirling aerosol collection. Aerosol Sci. Technol. 32 (3):184–196. doi: 10.1080/027868200303722.
  • Lin, X. J., K. Willeke, V. Ulevicius, and S. A. Grinshpun. 1997. Effect of sampling time on the collection efficiency of all-glass impingers. Am. Ind. Hygiene Assoc. J. 58 (7):480–488. doi: 10.1080/15428119791012577.
  • Malik, A., M. Sakamoto, S. Hanazaki, M. Osawa, T. Suzuki, M. Tochigi, and K. Kakii. 2003. Coaggregation among nonflocculating bacteria isolated from activated sludge. Appl. Environ. Microbiol. 69 (10):6056–6063. doi: 10.1128/AEM.69.10.6056-6063.2003.
  • Mbareche, H., E. Brisebois, M. Veillette, and C. Duchaine. 2017a. Bioaerosol sampling and detection methods based on molecular approaches: No pain no gain. Sci. Total Environ. 599:2095–2104. doi: 10.1016/j.scitotenv.2017.05.076.
  • Mbareche, H., M. Veillette, L. Bonifait, M. E. Dubuis, Y. Benard, G. Marchand, G. J. Bilodeau, and C. Duchaine. 2017b. A next generation sequencing approach with a suitable bioinformatics workflow to study fungal diversity in bioaerosols released from two different types of composting plants. Sci. Total Environ. 601:1306–1314. doi: 10.1016/j.scitotenv.2017.05.235.
  • Mbareche, H., M. Veillette, G. J. Bilodeau, and C. Duchaine. 2018a. Bioaerosol sampler choice should consider efficiency and ability of samplers to cover microbial diversity. Appl. Environ. Microbiol. 84 (23):e01589–18. doi: 10.1128/AEM.01589-18.
  • Mbareche, H., M. Veillette, M. E. Dubuis, B. Bakhiyi, G. Marchand, J. Zayed, J. Lavoie, G. J. Bilodeau, and C. Duchaine. 2018b. Fungal bioaerosols in biomethanization facilities. J. Air Waste Manage. Assoc. 68:1198–1210. doi: 10.1080/10962247.2018.1492472.
  • Nunan, N., K. J. Wu, I. M. Young, J. W. Crawford, and K. Ritz. 2003. Spatial distribution of bacterial communities and their relationships with the micro-architecture of soil. FEMS Microbiol. Ecol. 44 (2):203–215. doi: 10.1016/S0168-6496(03)00027-8.
  • Pahl, O., V. R. Phillips, J. Lacey, J. Hartung, and C. M. Wathes. 1997. Comparison of commonly used samplers with a novel bioaerosol sampler with automatic plate exchange. J. Aerosol Sci. 28 (3):427–435. doi: 10.1016/S0021-8502(96)00445-4.
  • Perrott, P., N. Turgeon, L. Gauthier-Levesque, and C. Duchaine. 2017. Preferential aerosolization of bacteria in bioaerosols generated in vitro. J. Appl. Microbiol. 123 (3):688–697. doi: 10.1111/jam.13514.
  • Poulain, S., and L. Bourouiba. 2018. Biosurfactants change the thinning of contaminated bubbles at Bacteria-Laden water interfaces. Phys. Rev. Lett. 121 (20): 121. doi: 10.1103/PhysRevLett.121.204502.
  • Ramette, A. 2007. Multivariate analyses in microbial ecology. FEMS Microbiol. Ecol. 62 (2):142–160. doi: 10.1111/j.1574-6941.2007.00375.x.
  • Riemenschneider, L., M. H. Woo, C. Y. Wu, D. Lundgren, J. Wander, J. H. Lee, H. W. Li, and B. Heimbuch. 2010. Characterization of reaerosolization from impingers in an effort to improve airborne virus sampling. J. Appl. Microbiol. 108 (1):315–324. doi: 10.1111/j.1365-2672.2009.04425.x.
  • Rognes, T., T. Flouri, B. Nichols, C. Quince, and F. Mahe. 2016. VSEARCH: A versatile open source tool for metagenomics. PeerJ 4:e2584. doi: 10.7717/peerj.2584.
  • Rosenberg, M., D. Gutnick, and E. Rosenberg. 1980. Adherence of bacteria to hydrocarbons – a simple method for measuring cell-surface hydrophobicity. FEMS Microbiol. Lett. 9 (1):29–33. doi: 10.1111/j.1574-6968.1980.tb05599.x.
  • Rule, A. M., J. Kesavan, K. J. Schwab, and T. J. Buckley. 2007. Application of flow cytometry for the assessment of preservation and recovery efficiency of bioaerosol samplers spiked with Pantoea agglomerans. Environ. Sci. Technol. 41:2467–2472. doi: 10.1021/es062394l.
  • Sanchez-Munoz, M.,. M. Munoz-Vicente, G. Cobas, R. Portela, R. Amils, and B. Sanchez. 2012. Comparison of three high-flow single-stage impaction-based air samplers for bacteria quantification: DUO SAS SUPER 360, SAMPL’AIR and SPIN AIR. Anal Methods 4:399–405. doi: 10.1039/C1AY05562C.
  • Schloss, P. D., S. L. Westcott, T. Ryabin, J. R. Hall, M. Hartmann, E. B. Hollister, R. A. Lesniewski, B. B. Oakley, D. H. Parks, C. J. Robinson, J. W. Sahl, B. Stres, G. G. Thallinger, D. J. Van Horn, and C. F. Weber. 2009. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75 (23):7537–7541. doi: 10.1128/AEM.01541-09.
  • Springorum, A. C., M. Clauß, and J. Hartung. 2011. A Temperature-Controlled AGI-30 impinger for sampling of bioaerosols. Aerosol Sci. Technol. 45 (10):1231–1239. doi: 10.1080/02786826.2011.588275.
  • Su, W. C., A. D. Tolchinsky, B. T. Chen, V. I. Sigaev, and Y. S. Cheng. 2012. Evaluation of physical sampling efficiency for cyclone-based personal bioaerosol samplers in moving air environments. J. Environ. Monit. 14 (9):2430–2437. doi: 10.1039/c2em30299c.
  • Terzieva, S., J. Donnelly, V. Ulevicius, S. A. Grinshpun, K. Willeke, G. N. Stelma, and K. P. Brenner. 1996. Comparison of methods for detection and enumeration of airborne microorganisms collected by liquid impingement. Appl. Environ. Microbiol. 62:2264–2272.
  • Thorne, P. S., M. S. Kiekhaefer, P. Whitten, and K. J. Donham. 1992. Comparison of bioaerosol sampling methods in barns housing swine. Appl. Environ. Microbiol. 58:2543–2551. doi: 10.1128/AEM.67.6.2775-2780.2001.
  • van der Heijden, M. G. A., R. D. Bardgett, and N. M. van Straalen. 2008. The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 11 (3):296–310. doi: 10.1111/j.1461-0248.2007.01139.x.
  • Veillette, M., H. Mbareche, and V. Dion-Dupont. 2017. Dubuis, ME and Duchaine, C. 2017. Influence of bioareosols sampling procedure on airborne biodiversity assessment. Poster presented at the American Society for Microbiology General Meeting-Microbe 2017. New Orleans, LA June.
  • Verreault, D., S. Moineau, and C. Duchaine. 2008. Methods for sampling of airborne viruses. Microbiol. Mol. Biol. Rev. 72 (3):413–444. doi: 10.1128/MMBR.00002-08.
  • Wagner, R. 1994. The regulation of ribosomal-RNA synthesis and bacterial-cell growth. Arch. Microbiol. 161 (2):100–109.
  • West, J. S., and R. B. E. Kimber. 2015. Innovations in air sampling to detect plant pathogens. Ann. Appl. Biol. 166 (1):4–17. doi: 10.1111/aab.12191.
  • Whitehead, N. A., A. M. L. Barnard, H. Slater, N. J. L. Simpson, and G. P. C. Salmond. 2001. Quorum-sensing in gram-negative bacteria. FEMS Microbiol. Rev. 25 (4):365–404. doi: 10.1111/j.1574-6976.2001.tb00583.x.
  • Whitman, W. B., D. C. Coleman, and W. J. Wiebe. 1998. Prokaryotes: The unseen majority. Proc. Natl. Acad. Sci. U. S. A. 95 (12):6578–6583. doi: 10.1073/pnas.95.12.6578.
  • Willeke, K., X. J. Lin, and S. A. Grinshpun. 1998. Improved aerosol collection by combined impaction and centrifugal motion. Aerosol Sci. Technol. 28 (5):439–456. doi: 10.1080/02786829808965536.
  • Wilson, W. W., M. M. Wade, S. C. Holman, and F. R. Champlin. 2001. Status of methods for assessing bacterial cell surface charge properties based on zeta potential measurements. J. Microbiol. Methods 43 (3):153–164. doi: 10.1016/S0167-7012(00)00224-4.
  • Wubulihairen, M., X. Y. Lu, P. K. H. Lee, and Z. Ning. 2015. Development and laboratory evaluation of a compact swirling aerosol sampler (SAS) for collection of atmospheric bioaerosols. Atmos. Pollut. Res. 6 (4):556–561. doi: 10.5094/APR.2015.062.
  • Yamamoto, N., D. Schmechel, B. T. Chen, W. G. Lindsley, and J. Peccia. 2011. Comparison of quantitative airborne fungi measurements by active and passive sampling methods. J. Aerosol Sci. 42 (8):499–507. doi: 10.1016/j.jaerosci.2011.05.004.
  • Yao, M. S., H. L. Zhang, S. F. Dong, S. Q. Zhen, and X. D. Chen. 2009. Comparison of electrostatic collection and liquid impinging methods when collecting airborne house dust allergens, endotoxin and (1,3)-beta-d-glucans. J. Aerosol Sci. 40 (6):492–502. doi: 10.1016/j.jaerosci.2009.02.002.
  • Yooseph, S., C. Andrews-Pfannkoch, A. Tenney, J. McQuaid, S. Williamson, M. Thiagarajan, D. Brami, L. Zeigler-Allen, J. Hoffman, J. B. Goll, D. Fadrosh, J. Glass, M. D. Adams, R. Friedman, and J. C. Venter. 2013. A metagenomic framework for the study of airborne microbial communities. PloS One 8 (12):e81862. doi: 10.1371/journal.pone.0081862.
  • Yu, K. P., Y. P. Chen, J. Y. Gong, Y. C. Chen, and C. C. Cheng. 2016. Improving the collection efficiency of the liquid impinger for ultrafine particles and viral aerosols by applying granular bed filtration. J. Aerosol Sci. 101:133–143.
  • Zheng, Y. H., and M. S. Yao. 2017. Liquid impinger BioSampler’s performance for size-resolved viable bioaerosol particles. J. Aerosol Sci. 106:34–42. doi: 10.1016/j.jaerosci.2017.01.003.
  • Zhen, H. J., V. Krumins, D. E. Fennell, and G. Mainelis. 2018. Analysis of airborne microbial communities using 16S ribosomal RNA: Potential bias due to air sampling stress. Sci. Total Environ. 621:939–947. doi: 10.1016/j.scitotenv.2017.10.154.
  • Zhen, S. Q., K. J. Li, L. H. Yin, M. S. Yao, H. L. Zhang, L. S. Chen, M. H. Zhou, and X. D. Chen. 2009. A comparison of the efficiencies of a portable BioStage impactor and a Reuter centrifugal sampler (RCS) high flow for measuring airborne bacteria and fungi concentrations. J. Aerosol Sci. 40 (6):503–513. doi: 10.1016/j.jaerosci.2009.02.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.