651
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Dynamic response of light absorption by PM2.5 bound water-soluble organic carbon to heterogeneous oxidation

, , &
Pages 1404-1414 | Received 15 May 2019, Accepted 19 Aug 2019, Published online: 16 Sep 2019

References

  • Bahadori, M., and H. Tofighi. 2016. A modified Walkley–Black method based on spectrophotometric procedure. Commun. Soil Sci. Plan. 47 (2):213–220. doi: 10.1080/00103624.2015.1118118.
  • Bahadur, R., P. S. Praveen, Y. Xu, and V. Ramanathan. 2012. Solar absorption by elemental and brown carbon determined from spectral observations. Proc. Natl. Acad. Sci. USA 109 (43):17366–17371. doi: 10.1073/pnas.1205910109.
  • Bohren, C. F., and D. R. Huffman. 1998. Absorption and scattering of light by small particles. New York, NY: Wiley.
  • Bond, T. C., S. J. Doherty, D. W. Fahey, P. M. Forster, T. Berntsen, B. J. DeAngelo, M. G. Flanner, S. Ghan, B. Kärcher, D. Koch, et al. 2013. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos. 118 (11):5380–5552. doi: 10.1002/jgrd.50171.
  • Browne, E. C., X. Zhang, J. P. Franklin, K. J. Ridley, T. W. Kirchstetter, K. R. Wilson, C. D. Cappa, and J. H. Kroll. 2019. Effect of heterogeneous oxidative aging on light absorption by biomass burning organic aerosol. Aerosol Sci. Technol. 53 (6):663–674. doi: 10.1080/02786826.2019.1599321.
  • Bui, N. Q., P. Fongarland, F. Rataboul, C. Dartiguelongue, N. Charon, C. Vallée, and N. Essayem. 2015. FTIR as a simple tool to quantify unconverted lignin from chars in biomass liquefaction process: Application to SC ethanol liquefaction of pine wood. Fuel Process. Technol. 134:378–386. doi: 10.1016/j.fuproc.2015.02.020..
  • Cappa, C. D., D. L. Che, S. H. Kessler, J. H. Kroll, and K. R. Wilson. 2011. Variations in organic aerosol optical and hygroscopic properties upon heterogeneous OH oxidation. J. Geophys. Res. Atmos. 116:D15204. doi: 10.1029/2011jd015918.
  • Cappa, C. D., T. B. Onasch, P. Massoli, D. R. Worsnop, T. S. Bates, E. S. Cross, P. Davidovits, J. Hakala, K. L. Hayden, B. T. Jobson, et al. 2012. Radiative absorption enhancements due to the mixing state of atmospheric black carbon. Science 337 (6098):1078–1081. doi: 10.1126/science.1223447.
  • Chakrabarty, R. K., M. Gyawali, R. L. N. Yatavelli, A. Pandey, A. C. Watts, J. Knue, L. W. A. Chen, R. R. Pattison, A. Tsibart, V. Samburova, et al. 2016. Brown carbon aerosols from burning of boreal peatlands: Microphysical properties, emission factors, and implications for direct radiative forcing. Atmos. Chem. Phys. 16 (5):3033–3040. doi: 10.5194/acp-16-3033-2016.
  • Chan, M. N., H. Zhang, A. H. Goldstein, and K. R. Wilson. 2014. Role of water and phase in the heterogeneous oxidation of solid and aqueous succinic acid aerosol by hydroxyl radicals. J. Phys. Chem. C 118 (50):28978–28992. doi: 10.1021/jp5012022.
  • Chang, J. L., and J. E. Thompson. 2010. Characterization of colored products formed during irradiation of aqueous solutions containing H2O2 and phenolic compounds. Atmos. Environ. 44 (4):541–551. doi: 10.1016/j.atmosenv.2009.10.042.
  • Chen, Y., and T. C. Bond. 2010. Light absorption by organic carbon from wood combustion. Atmos. Chem. Phys. 10 (4):1773–1783. doi: 10.5194/acp-10-1773-2010.
  • Chiu, R., L. Tinel, L. Gonzalez, R. Ciuraru, F. Bernard, C. George, and R. Volkamer. 2017. UV photochemistry of carboxylic acids at the air-sea boundary: A relevant source of glyoxal and other oxygenated VOC in the marine atmosphere. Geophys. Res. Lett. 44 (2):1079–1087. doi: 10.1002/2016GL071240.
  • Collett, J. L., K. J. Hoag, X. Rao, and S. N. Pandis. 1999. Internal acid buffering in San Joaquin Valley fog drops and its influence on aerosol processing. Atmos. Environ. 33 (29):4833–4847. doi: 10.1016/S1352-2310(99)00221-6.
  • Dasari, S., A. Andersson, S. Bikkina, H. Holmstrand, K. Budhavant, S. Satheesh, E. Asmi, J. Kesti, J. Backman, A. Salam, et al. 2019. Photochemical degradation affects the light absorption of water-soluble brown carbon in the South Asian outflow. Sci. Adv. 5 (1):eaau8066. doi: 10.1126/sciadv.aau8066.
  • Desyaterik, Y., Y. Sun, X. Shen, T. Lee, X. Wang, T. Wang, and J. L. Collett. Jr.2013. Speciation of “brown” carbon in cloud water impacted by agricultural biomass burning in Eastern China. J. Geophys. Res. Atmos. 118 (13):7389–7399. doi: 10.1002/jgrd.50561.
  • Di Lorenzo, R. A., R. A. Washenfelder, A. R. Attwood, H. Guo, L. Xu, N. L. Ng, R. J. Weber, K. Baumann, E. Edgerton, and C. J. Young. 2017. Molecular-size-separated brown carbon absorption for biomass-burning aerosol at multiple field sites. Environ. Sci. Technol. 51 (6):3128–3137. doi: 10.1021/acs.est.6b06160.
  • Duarte, R. M. B. O., S. M. S. C. Freire, and A. C. Duarte. 2015. Investigating the water-soluble organic functionality of urban aerosols using two-dimensional correlation of solid-state 13C NMR and FTIR spectral data. Atmos. Environ. 116:245–252. doi: 10.1016/j.atmosenv.2015.06.043.
  • Emanuelsson, E. U., T. F. Mentel, A. K. Watne, C. Spindler, B. Bohn, T. Brauers, H. P. Dorn, A. M. Hallquist, R. Haseler, A. Kiendler-Scharr, et al. 2014. Parameterization of thermal properties of aging secondary organic aerosol produced by Photo-Oxidation of selected terpene mixtures. Environ. Sci. Technol. 48 (11):6168–6176. doi: 10.1021/es405412p.
  • Ervens, B., B. J. Turpin, and R. J. Weber. 2011. Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): A review of laboratory, field and model studies. Atmos. Chem. Phys. 11 (21):11069–11102. doi: 10.5194/acp-11-11069-2011.
  • Fan, X., S. Wei, M. Zhu, J. Song, and P. Peng. 2016. Comprehensive characterization of humic-like substances in smoke PM2.5 emitted from the combustion of biomass materials and fossil fuels. Atmos. Chem. Phys. 16 (20):13321–13340. doi: 10.5194/acp-16-13321-2016.
  • Fang, Z., W. Deng, Y. Zhang, X. Ding, M. Tang, T. Liu, Q. Hu, M. Zhu, Z. Wang, W. Yang, et al. 2017. Open burning of rice, corn and wheat straws: Primary emissions, photochemical aging, and secondary organic aerosol formation. Atmos. Chem. Phys. 17 (24):14821–14839. doi: 10.5194/acp-17-14821-2017.
  • Feng, Y., V. Ramanathan, and V. R. Kotamarthi. 2013. Brown carbon: A significant atmospheric absorber of solar radiation? Atmos. Chem. Phys. 13 (17):8607–8621. doi: 10.5194/acp-13-8607-2013.
  • Forrister, H., J. Liu, E. Scheuer, J. Dibb, L. Ziemba, K. L. Thornhill, B. Anderson, G. Diskin, A. E. Perring, J. P. Schwarz, et al. 2015. Evolution of brown carbon in wildfire plumes. Geophys. Res. Lett. 42 (11):4623–4630. doi: 10.1002/2015GL063897.
  • Fu, H., R. Ciuraru, Y. Dupart, M. Passananti, L. Tinel, S. Rossignol, S. Perrier, D. J. Donaldson, J. Chen, and C. George. 2015. Photosensitized production of atmospherically reactive organic compounds at the air/aqueous interface. J. Am. Chem. Soc. 137 (26):8348–8351. doi: 10.1021/jacs.5b04051.
  • Galbavy, E. S., K. Ram, and C. Anastasio. 2010. 2-Nitrobenzaldehyde as a chemical actinometer for solution and ice photochemistry. J. Photochem. Photobiol. A Chem. 209 (2–3):186–192. doi: 10.1016/j.jphotochem.2009.11.013.
  • Gelencsér, A., A. Hoffer, G. Kiss, E. Tombácz, R. Kurdi, and L. Bencze. 2003. In-situ formation of Light-Absorbing organic matter in cloud water. J. Atmos. Chem. 45 (1):25–33. doi: 10.1023/a:1024060428172.
  • Glover, C. M., and F. L. Rosario-Ortiz. 2013. Impact of halides on the photoproduction of reactive intermediates from organic matter. Environ. Sci. Technol. 47 (24):13949–13956. doi: 10.1021/es4026886.
  • Graham, B., O. L. Mayol-Bracero, P. Guyon, G. C. Roberts, S. Decesari, M. C. Facchini, P. Artaxo, W. Maenhaut, P. Köll, and M. O. Andreae. 2002. Water-soluble organic compounds in biomass burning aerosols over Amazonia 1. Characterization by NMR and GC-MS. J. Geophys. Res. 107 (D20):LBA 14-11-LBA 14-16. doi: 10.1029/2001JD000336.
  • Hecobian, A., X. Zhang, M. Zheng, N. Frank, E. S. Edgerton, and R. J. Weber. 2010. Water-soluble organic aerosol material and the light-absorption characteristics of aqueous extracts measured over the southeastern United States. Atmos. Chem. Phys. 10 (13):5965–5977. doi: 10.5194/acp-10-5965-2010.
  • Hems, R. F., and J. P. D. Abbatt. 2018. Aqueous phase photo-oxidation of brown carbon nitrophenols: Reaction kinetics, mechanism, and evolution of light absorption. ACS Earth Space Chem. 2 (3):225–234. doi: 10.1021/acsearthspacechem.7b00123.
  • Huang, K., J. S. Fu, N. C. Hsu, Y. Gao, X. Dong, S. C. Tsay, and Y. F. Lam. 2013. Impact assessment of biomass burning on air quality in Southeast and East Asia during BASE-ASIA. Atmos. Environ. 78:291–302. doi: 10.1016/j.atmosenv.2012.03.048.
  • Jacobson, M. Z. 2001. Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature 409 (6821):695. doi: 10.1038/35055518.
  • Jacobson, M. Z. 2014. Effects of biomass burning on climate, accounting for heat and moisture fluxes, black and brown carbon, and cloud absorption effects. J. Geophys. Res. Atmos. 119 (14):8980–9002. doi: 10.1002/2014JD021861.
  • Kirchstetter, T. W., T. Novakov, and P. V. Hobbs. 2004. Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon. J. Geophys. Res. 109 (D21). doi: 10.1029/2004JD004999.
  • Klan, O., and J. Wirz. 2009. Photochemistry of organic compounds: From concepts to practice. 1st ed., 296–338. Hoboken: Wiley.
  • Kroll, J. H., C. Y. Lim, S. H. Kessler, and K. R. Wilson. 2015. Heterogeneous oxidation of atmospheric organic aerosol: Kinetics of changes to the amount and oxidation state of particle-phase organic carbon. J. Phys. Chem. A 119 (44):10767–10783. doi: 10.1021/acs.jpca.5b06946.
  • Laskin, A., J. Laskin, and S. A. Nizkorodov. 2015. Chemistry of atmospheric brown carbon. Chem. Rev 115 (10):4335–4382. doi: 10.1021/cr5006167.
  • Laskin, J., A. Laskin, S. A. Nizkorodov, P. Roach, P. Eckert, M. K. Gilles, B. Wang, H. J. Lee, and Q. Hu. 2014. Molecular selectivity of brown carbon chromophores. Environ. Sci. Technol. 48 (20):12047–12055. doi: 10.1021/es503432r.
  • Lee, H. J., P. K. Aiona, A. Laskin, J. Laskin, and S. A. Nizkorodov. 2014. Effect of solar radiation on the optical properties and molecular composition of laboratory proxies of atmospheric brown carbon. Environ. Sci. Technol. 48 (17):10217–10226. doi: 10.1021/es502515r.
  • Lettens, S., B. De Vos, P. Quataert, B. Van Wesemael, B. Muys, and J. Van Orshoven. 2007. Variable carbon recovery of Walkley–Black analysis and implications for national soil organic carbon accounting. Eur. J. Soil Sci. 58 (6):1244–1253. doi: 10.1111/j.1365-2389.2007.00916.x.
  • Li, Z., A. K. Smith, and C. D. Cappa. 2018. Influence of relative humidity on the heterogeneous oxidation of secondary organic aerosol. Atmos. Chem. Phys 18 (19):14585–14608. doi: 10.5194/acp-18-14585-2018.
  • Lim, C. Y., E. C. Browne, R. A. Sugrue, and J. H. Kroll. 2017. Rapid heterogeneous oxidation of organic coatings on submicron aerosols. Geophys. Res. Lett. 44 (6):2949–2957. doi: 10.1002/2017GL072585.
  • Lin, P., P. K. Aiona, Y. Li, M. Shiraiwa, J. Laskin, J. S. A. Nizkorodov, and A. Laskin. 2016. Molecular characterization of brown carbon in biomass burning aerosol particles. Environ. Sci. Technol. 50 (21):11815–11824. doi: 10.1021/acs.est.6b03024.
  • Lin-Vien, D., N. B. Colthup, W. G. Fateley, and J. G. Grasselli. 1991. Alcohols and phenols. In The handbook of infrared and Raman characteristic frequencies of organic molecules, eds. D. Lin-Vien, N. B. Colthup, W. G. Fateley, and J. G. Grasselli, 45–60. San Diego: Academic Press.
  • Liu, J., P. Lin, A. Laskin, J. Laskin, S. M. Kathmann, M. Wise, R. Caylor, F. Imholt, V. Selimovic, and J. E. Shilling. 2016. Optical properties and aging of light-absorbing secondary organic aerosol. Atmos. Chem. Phys. 16 (19):12815–12827. doi: 10.5194/acp-16-12815-2016.
  • Liu, J., E. Scheuer, J. Dibb, L. D. Ziemba, K. L. Thornhill, B. E. Anderson, A. Wisthaler, T. Mikoviny, J. J. Devi, M. Bergin, et al. 2014. Brown carbon in the continental troposphere. Geophys. Res. Lett. 41 (6):2191–2195. doi: 10.1002/2013GL058976.
  • Liu, P., Y. Zhang, and S. T. Martin. 2013. Complex refractive indices of thin films of secondary organic materials by spectroscopic ellipsometry from 220 to 1200 nm. Environ. Sci. Technol. 47 (23):13594–13601. doi: 10.1021/es403411e.
  • Liu, P. F., N. Abdelmalki, H. M. Hung, Y. Wang, W. H. Brune, and S. T. Martin. 2015. Ultraviolet and visible complex refractive indices of secondary organic material produced by photooxidation of the aromatic compounds toluene and m-xylene. Atmos. Chem. Phys. 15 (3):1435–1446. doi: 10.5194/acp-15-1435-2015.
  • Menon, S., J. Hansen, L. Nazarenko, and Y. Luo. 2002. Climate effects of black carbon aerosols in China and India. Science 297 (5590):2250–2253. doi: 10.1126/science.1075159.
  • Mie, G. 1908. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys-Berlin, 330 (3):377–445. doi: 10.1002/andp.19083300302.
  • Mikhailova, E. A., R. R. P. Noble, and C. J. Post. 2003. Comparison of soil organic carbon recovery by Walkley–Black and dry combustion methods in the russian chernozem. Commun. Soil Sci. Plan. 34 (13–14):1853–1860. doi: 10.1081/CSS-120023220.
  • Mok, J., N. A. Krotkov, A. Arola, O. Torres, H. Jethva, M. Andrade, G. Labow, T. F. Eck, Z. Li, R. R. Dickerson, et al. 2016. Impacts of brown carbon from biomass burning on surface UV and ozone photochemistry in the amazon basin. Sci. Rep. 6:36940. doi: 10.1038/srep36940.
  • Moosmüller, H., and C. M. Sorensen. 2018. Small and large particle limits of single scattering albedo for homogeneous, spherical particles. J. Quant. Spectrosc. Radiat. Transf. 204:250–255. doi: 10.1016/j.jqsrt.2017.09.029.
  • Phillips, S. M., and G. D. Smith. 2014. Light absorption by charge transfer complexes in brown carbon aerosols. Environ. Sci. Technol. Lett. 1 (10):382–386. doi: 10.1021/ez500263j.
  • Piva, O. 2004. Chapter 70: Photodeconjugation of enones and carboxylic acid derivatives. In CRC handbook of organic photochemistry and photobiology, eds. W. M. Horspool and F. Lenci, 1–18. Boca Raton, FL: CRC Press LLC.
  • Ray, D., S. K. Ghosh, and S. Raha. 2019. Impacts of photochemical ageing on the half-lives and diagnostic ratio of polycyclic aromatic hydrocarbons intrinsic to PM2.5 collected from ‘real-world’ like combustion events of wood and rice straw burning. J. Hazard. Mater. 366:10–15. doi: 10.1016/j.jhazmat.2018.11.079.
  • Rossignol, S., K. Z. Aregahegn, L. Tinel, L. Fine, B. Nozière, and C. George. 2014. Glyoxal induced atmospheric photosensitized chemistry leading to organic aerosol growth. Environ. Sci. Technol. 48 (6):3218–3227. doi: 10.1021/es405581g.
  • Saleh, R., C. J. Hennigan, G. R. McMeeking, W. K. Chuang, E. S. Robinson, H. Coe, N. M. Donahue, and A. L. Robinson. 2013. Absorptivity of brown carbon in fresh and photo-chemically aged biomass-burning emissions. Atmos. Chem. Phys. 13 (15):7683–7693. doi: 10.5194/acp-13-7683-2013.
  • Sareen, N., S. G. Moussa, and V. F. McNeill. 2013. Photochemical aging of Light-Absorbing secondary organic aerosol material. J. Phys. Chem. A 117 (14):2987–2996. doi: 10.1021/jp309413j.
  • Schkolnik, G., D. Chand, A. Hoffer, M. O. Andreae, C. Erlick, E. Swietlicki, and Y. Rudich. 2007. Constraining the density and complex refractive index of elemental and organic carbon in biomass burning aerosol using optical and chemical measurements. Atmos. Environ. 41 (5):1107–1118. doi: 10.1016/j.atmosenv.2006.09.035.
  • Schwarzenbach, R. P., P. M. Gschwend, and D. M. Imboden. 2003. Environmental organic chemistry. 2nd ed. Hoboken: Wiley.
  • Sengupta, D., V. Samburova, C. Bhattarai, E. Kirillova, L. Mazzoleni, M. Iaukea-Lum, A. Watts, H. Moosmüller, and A. Khlystov. 2018. Light absorption by polar and non-polar aerosol compounds from laboratory biomass combustion. Atmos. Chem. Phys. 18 (15):10849–10867. doi: 10.5194/acp-18-10849-2018.
  • Shamjad, P. M., S. N. Tripathi, R. Pathak, M. Hallquist, A. Arola, and M. H. Bergin. 2015. Contribution of brown carbon to direct radiative forcing over the Indo-Gangetic plain. Environ. Sci. Technol. 49 (17):10474–10481. doi: 10.1021/acs.est.5b03368.
  • Slade, J. H., and D. A. Knopf. 2013. Heterogeneous OH oxidation of biomass burning organic aerosol surrogate compounds: Assessment of volatilisation products and the role of OH concentration on the reactive uptake kinetics. Phys. Chem. Chem. Phys. 15 (16):5898–5915. doi: 10.1039/c3cp44695f.
  • Smith, J. D., J. H. Kroll, C. D. Cappa, D. L. Che, C. L. Liu, M. Ahmed, S. R. Leone, D. R. Worsnop, and K. R. Wilson. 2009. The heterogeneous reaction of hydroxyl radicals with submicron squalane particles: A model system for understanding the oxidative aging of ambient aerosols. Atmos. Chem. Phys. 9 (9):3209–3222. doi: 10.5194/acp-9-3209-2009.
  • Sumlin, B. J., A. Pandey, M. J. Walker, R. S. Pattison, B. J. Williams, and R. K. Chakrabarty. 2017. Atmospheric photooxidation diminishes light absorption by primary brown carbon aerosol from biomass burning. Environ. Sci. Technol. Lett. 4 (12):540–545. doi: 10.1021/acs.estlett.7b00393.
  • Takahashi, K., K. L. Plath, R. T. Skodje, and V. Vaida. 2008. Dynamics of vibrational overtone excited pyruvic acid in the gas phase: Line broadening through Hydrogen-Atom chattering. J. Phys. Chem. A 112 (32):7321–7331. doi: 10.1021/jp803225c.
  • Taylor, D. 2010. Biomass burning, humans and climate change in southeast asia. Biodiversity Conserv. 19 (4):1025–1042. doi: 10.1007/s10531-009-9756-6.
  • Walkley, A., and I. A. Black. 1934. An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 37 (1):29–38. doi: 10.1097/00010694-193401000-00003.
  • Wong, J. P. S., A. Nenes, and R. J. Weber. 2017. Changes in light absorptivity of molecular weight separated brown carbon due to photolytic aging. Environ. Sci. Technol. 51 (15):8414–8421. doi: 10.1021/acs.est.7b01739.
  • Xing, Y. F., Y. H. Xu, M. H. Shi, and Y. X. Lian. 2016. The impact of PM2.5 on the human respiratory system. J. Thorac. Dis. 8 (1):E69–E74. doi: 10.3978/j.issn.2072-1439.2016.01.19.
  • Yu, J., G. H. Yu, S. Park, and M. S. Bae. 2017. Chemical and absorption characteristics of water-soluble organic carbon and humic-like substances in size-segregated particles from biomass burning emissions. Asian J. Atmos. Environ. 11 (2):96–106. doi: 10.5572/ajae.2017.11.2.096.
  • Zhang, L., H. Liao, and J. Li. 2010. Impact of the Southeast Asian summer monsoon strength on the outflow of aerosols from South Asia. Ann. Geophys. 28 (1):277–287. doi: 10.5194/angeo-28-277-2010.
  • Zhong, M., and M. Jang. 2014. Dynamic light absorption of biomass-burning organic carbon photochemically aged under natural sunlight. Atmos. Chem. Phys. 14 (3):1517–1523. doi: 10.5194/acp-14-1517-2014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.