860
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Measuring aerosol active surface area by direct ultraviolet photoionization and charge capture in continuous flow

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1429-1440 | Received 04 Feb 2019, Accepted 22 Aug 2019, Published online: 18 Sep 2019

References

  • Asbach, C., H. Kaminski, D. von Barany, T. A. J. Kuhlbusch, C. Monz, N. Dziurowitz, J. Pelzer, K. Vossen, K. Berlin, S. Dietrich, et al. 2012. Comparability of portable nanoparticle exposure monitors. Ann. Occup. Hyg. 56 (5):606–621.
  • Bukowiecki, N., D. B. Kittelson, W. F. Watts, H. Burtscher, E. Weingartner, and U. Baltensperger. 2002. Real-time characterization of ultrafine and accumulation mode particles in ambient combustion aerosols. J. Aerosol. Sci. 33 (8):1139–1154. doi: 10.1016/S0021-8502(02)00063-0.
  • Burtscher, H. 1992. Measurement and characteristics of combustion aerosols with special consideration of photoelectric charging and charging by flame ions. J. Aerosol. Sci. 23 (6):549–595. doi: 10.1016/0021-8502(92)90026-R.
  • Burtscher, H. 2005. Physical characterization of particulate emissions from diesel engines: A review. J. Aerosol. Sci. 36 (7):896–932. doi: 10.1016/j.jaerosci.2004.12.001.
  • Burtscher, H., S. Künzel, and C. Hüglin. 1998. Characterization of particles in combustion engine exhaust. J. Aerosol Sci. 29 (4):389–396. doi: 10.1016/S0021-8502(97)10001-5.
  • Burtscher, H., L. Scherrer, H. C. Siegmann, A. Schmidt-Ott, and B. Federer. 1982. Probing aerosols by photoelectric charging. J. Appl. Phys. 53 (5):3787–3791. doi: 10.1063/1.331120.
  • Burtscher, H., A. Schmidt-Ott, and H. C. Siegmann. 1984. Photoelectron yield of small silver and gold particles suspended in gas up to a photon energy of 10 eV. Z. Für Phys. B: Condens. Matter 56 (3):197–199. doi: 10.1007/BF01304172.
  • Byeon, J. H., and J. T. Roberts. 2014. Photoionization of nanosized aerosol gold agglomerates and their deposition to form nanoscale islands on substrates. Langmuir 30 (29):8770–8775. doi: 10.1021/la501410z.
  • Cao, L. N. Y., J. Wang, H. Fissan, S. E. Pratsinis, M. L. Eggersdorfer, and D. Y. Pui. 2015. The capacitance and charge of agglomerated nanoparticles during sintering. J. Aerosol Sci. 83:1–11. doi: 10.1016/j.jaerosci.2015.01.002.
  • Cardona, M., and L. Ley. 1978. Photoemission in solids I. Berlin: Springer-Verlag.
  • DeCarlo, P. F., J. G. Slowik, D. R. Worsnop, P. Davidovits, and J. L. Jimenez. 2004. Particle morphology and density characterization by combined mobility and aerodynamic diameter measurements. Part 1: Theory. Aerosol. Sci. Technol. 38 (12):1185–1205. doi: 10.1080/027868290903907.
  • Dobbins, R. A., G. W. Mulholland, and N. P. Bryner. 1994. Comparison of a fractal smoke optics model with light extinction measurements. Atmos. Environ. 28 (5):889–897. doi: 10.1016/1352-2310(94)90247-X.
  • Eggersdorfer, M. L., D. Kadau, H. J. Herrmann, and S. E. Pratsinis. 2012. Aggregate morphology evolution by sintering: Number and diameter of primary particles. J. Aerosol. Sci. 46:7–19. doi: 10.1016/j.jaerosci.2011.11.005.
  • Fierz, M., C. Houle, P. Steigmeier, and H. Burtscher. 2011. Design, calibration, and field performance of a miniature diffusion size classifier. Aerosol. Sci. Technol. 45 (1):1–10. doi: 10.1080/02786826.2010.516283.
  • Flagan, R. C. 1998. History of electrical aerosol measurements. Aerosol. Sci. Technol. 28 (4):301–380. doi: 10.1080/02786829808965530.
  • Hogan, C. J., M.-H. Lee, and P. Biswas. 2004. Capture of viral particles in soft X-ray–enhanced corona systems: Charge distribution and transport characteristics. Aerosol. Sci. Technol. 38 (5):475–486. doi: 10.1080/02786820490462183.
  • Hontañón, E., and F. E. Kruis. 2008. Single charging of nanoparticles by UV photoionization at high flow rates. Aerosol. Sci. Technol. 42 (4):310–323. doi: 10.1080/02786820802054244.
  • Jiang, J., C. J. Hogan, Jr, D.-R. Chen, and P. Biswas. 2007a. Aerosol charging and capture in the nanoparticle size range (6–15 nm) by direct photoionization and diffusion mechanisms. J. Appl. Phys. 102 (3):034904. doi: 10.1063/1.2768061.
  • Jiang, J., M.-H. Lee, and P. Biswas. 2007b. Model for nanoparticle charging by diffusion, direct photoionization, and thermionization mechanisms. J. Electrostat. 65 (4):209–220. doi: 10.1016/j.elstat.2006.07.017.
  • Johnson, T., R. Nishida, M. Irwin, J. Symonds, S. J. Olfert, and A. Boies. 2018a. Agreement between different aerosol classifiers using spherical particles. Paper presented at Cambridge Particle Meeting, Cambridge, UK, June 15.
  • Johnson, T. J., M. Irwin, J. P. Symonds, J. S. Olfert, and A. M. Boies. 2018b. Measuring aerosol size distributions with the aerodynamic aerosol classifier. Aerosol. Sci. Technol. 52 (6):655–665. doi: 10.1080/02786826.2018.1440063.
  • Jung, H., and D. B. Kittelson. 2005. Characterization of aerosol surface instruments in transition regime. Aerosol Sci. Technol. 39 (9):902–911. doi: 10.1080/02786820500295701.
  • Jung, T., H. Burtscher, and A. Schmidt-Ott. 1988. Multiple charging of ultrafine aerosol particles by aerosol photoemission (ape). J. Aerosol. Sci. 19 (4):485–490. doi: 10.1016/0021-8502(88)90023-7.
  • Keithley Instruments Inc. 2009. Model 6517B reference manual, revision B. Cleveland: Keithley Instruments Inc.
  • Keller, A., M. Fierz, K. Siegmann, H. C. Siegmann, and A. Filippov. 2001. Surface science with nanosized particles in a carrier gas. J. Vacuum Sci. Technol. A: Vacuum, Surfaces, Films 19 (1):1–8. doi: 10.1116/1.1339832.
  • Kinney, P. D., D. Y. H. Pui, G. W. Mulholland, and N. P. Bryner. 1991. Use of the electrostatic classification method to size 0.1 μm srm particles—a feasibility study. J. Res. Nat. Inst. Stand. Technol. 96 (2):147. doi: 10.6028/jres.096.006.
  • Kittelson, D., W. Watts, J. Savstrom, and J. Johnson. 2005. Influence of a catalytic stripper on the response of real time aerosol instruments to diesel exhaust aerosol. J. Aerosol. Sci. 36 (9):1089–1107. doi: 10.1016/j.jaerosci.2004.11.021.
  • Kulkarni, P., N. Namiki, Y. Otani, and P. Biswas. 2002. Charging of particles in unipolar coronas irradiated by in-situ soft X-rays: enhancement of capture efficiency of ultrafine particles. J. Aerosol. Sci. 33 (9):1279–1296. doi: 10.1016/S0021-8502(02)00067-8.
  • Li, L., and D.-R. Chen. 2011. Aerosol charging using pen-type UV lamps. Aerosol. Air Quality Res. 11 (7):791–801. doi: 10.4209/aaqr.2011.07.0103.
  • Maisels, A., F. Jordan, and H. Fissan. 2002. Dynamics of the aerosol particle photocharging process. J. Appl. Phys. 91 (5):3377–3383. doi: 10.1063/1.1446237.
  • Marra, J., M. Voetz, and H.-J. Kiesling. 2010. Monitor for detecting and assessing exposure to airborne nanoparticles. J. Nanoparticle Res. 12 (1):21–37. doi: 10.1007/s11051-009-9695-x.
  • Matter, D., M. Mohr, W. Fendel, A. Schmidt-Ott, and H. Burtscher. 1995. Multiple wavelength aerosol photoemission by excimer lamps. J. Aerosol. Sci. 26 (7):1101–1115. doi: 10.1016/0021-8502(95)00040-J.
  • Matter, U., H. C. Siegmann, and H. Burtscher. 1999. Dynamic field measurements of submicron particles from diesel engines. Environ. Sci. Technol. 33 (11):1946–1952. doi: 10.1021/es981095w.
  • McMurry, P. H., X. Wang, K. Park, and K. Ehara. 2002. The relationship between mass and mobility for atmospheric particles: A new technique for measuring particle density. Aerosol Sci. Technol. 36 (2):227–238. doi: 10.1080/027868202753504083.
  • Meakin, P., and T. A. Witten, Jr. 1983. Growing interface in diffusion-limited aggregation. Phys. Rev. A 28 (5):2985. doi: 10.1103/PhysRevA.28.2985.
  • Michaelson, H. B. 1977. The work function of the elements and its periodicity. J. Appl. Phys. 48 (11):4729–4733. doi: 10.1063/1.323539.
  • Mohr, M., D. Matter, and H. Burtscher. 1996. Efficient multiple charging of diesel particles by photoemission. Aerosol. Sci. Technol. 24 (1):14–20. doi: 10.1080/02786829608965348.
  • Müller, U., H. Burtscher, and A. Schmidt-Ott. 1988a. Photoemission from small metal spheres: A model calculation using an enhanced three-step model. Phys. Rev. B. 38 (11):7814. doi: 10.1103/PhysRevB.38.7814.
  • Müller, U., A. Schmidt-Ott, and H. Burtscher. 1988b. Photoelectric quantum yield of free silver particles near threshold. Z. Für. Phys. B: Condens. Matter 73 (1):103–106. doi: 10.1007/BF01312160.
  • Niessner, R. 1986. The chemical response of the photo-electric aerosol sensor (pas) to different aerosol systems. J. Aerosol. Sci. 17 (4):705–714. doi: 10.1016/0021-8502(86)90050-9.
  • Nishida, R., N. Yamasaki, M. Schriefl, A. Boies, and S. Hochgreb. 2019. Modelling the effect of aerosol polydispersity on unipolar charging and measurement in low-cost sensors. J. Aerosol. Sci. 130:10. doi: 10.1016/j.jaerosci.2019.01.003.
  • Nishida, R. T., A. M. Boies, and S. Hochgreb. 2017. Modelling of direct ultraviolet photoionization and charge recombination of aerosol nanoparticles in continuous flow. J. Appl. Phys. 121 (2):023104. doi: 10.1063/1.4972335.
  • Nishida, R. T., A. M. Boies, and S. Hochgreb. 2018. Measuring ultrafine aerosols by direct photoionization and charge capture in continuous flow. Aerosol. Sci. Technol. 52 (5):546–556. doi: 10.1080/02786826.2018.1430350.
  • Oh, H., H. Park, and S. Kim. 2004. Effects of particle shape on the unipolar diffusion charging of nonspherical particles. Aerosol. Sci. Technol. 38 (11):1045–1053. doi: 10.1080/027868290883324.
  • Olfert, J., and S. Rogak. 2019. Universal relations between soot effective density and primary particle size for common combustion sources. Aerosol. Sci. Technol. 53 (5):485–492. doi: 10.1080/02786826.2019.1577949.
  • Ott, W. R., and H. C. Siegmann. 2006. Using multiple continuous fine particle monitors to characterize tobacco, incense, candle, cooking, wood burning, and vehicular sources in indoor, outdoor, and in-transit settings. Atmos. Environ. 40 (5):821–843. doi: 10.1016/j.atmosenv.2005.08.020.
  • Röhrbein, J., and A. P. Weber. 2018. A system for on-line characterization of gas-borne particle surface properties based on their photoemission. J. Aerosol. Sci. 120:82. doi: 10.1016/j.jaerosci.2018.03.002.
  • Schmidt-Ott, A. 1988. New approaches to in situ characterization of ultrafine agglomerates. J. Aerosol. Sci. 19 (5):553–563. doi: 10.1016/0021-8502(88)90207-8.
  • Schmidt-Ott, A., U. Baltensperger, H. W. Gäggeler, and D. T. Jost. 1990. Scaling behaviour of physical parameters describing agglomerates. J. Aerosol. Sci. 21 (6):711–717. doi: 10.1016/0021-8502(90)90037-X.
  • Schmidt-Ott, A., and B. Federer. 1981. Photoelectron emission from small particles suspended in a gas. Surf. Sci. 106 (1–3):538–543. doi: 10.1016/0039-6028(81)90248-X.
  • Schmidt-Ott, A., P. Schurtenberger, and H. C. Siegmann. 1980. Enormous yield of photoelectrons from small particles. Phys. Rev. Lett. 45 (15):1284. doi: 10.1103/PhysRevLett.45.1284.
  • Shin, W. G., J. Wang, M. Mertler, B. Sachweh, H. Fissan, and D. Y. H. Pui. 2010. The effect of particle morphology on unipolar diffusion charging of nanoparticle agglomerates in the transition regime. J. Aerosol. Sci. 41 (11):975–986. doi: 10.1016/j.jaerosci.2010.07.004.
  • Spicer, W. E. 1967. Possible non-one-electron effects in the fundamental optical excitation spectra of certain crystalline solids and their effect on photoemission. Phys. Rev. 154 (2):385. doi: 10.1103/PhysRev.154.385.
  • Stettler, M. E. J., J. J. Swanson, S. R. H. Barrett, and A. M. Boies. 2013. Updated correlation between aircraft smoke number and black carbon concentration. Aerosol. Sci. Technol. 47 (11):1205–1214. doi: 10.1080/02786826.2013.829908.
  • Tavakoli, F., and J. S. Olfert. 2014. Determination of particle mass, effective density, mass–mobility exponent, and dynamic shape factor using an aerodynamic aerosol classifier and a differential mobility analyzer in tandem. J. Aerosol. Sci. 75:35–42. doi: 10.1016/j.jaerosci.2014.04.010.
  • Tavakoli, F., J. P. R. Symonds, and J. S. Olfert. 2014. Generation of a monodisperse size-classified aerosol independent of particle charge. Aerosol. Sci. Technol. 48 (3):i–iv. doi: 10.1080/02786826.2013.877121.
  • TSI Inc. 2006a. Model 3068B aerosol electrometer, user’s manual, revision A. Shoreview: TSI Inc.
  • TSI Inc. 2006b. Model 3776 ultrafine condensation particle counter: Operation and service manual, revision B. Shoreview: TSI Inc.
  • Wang, J., W. G. Shin, M. Mertler, B. Sachweh, H. Fissan, and D. Y. H. Pui. 2010. Measurement of nanoparticle agglomerates by combined measurement of electrical mobility and unipolar charging properties. Aerosol. Sci. Technol. 44 (2):97–108. doi: 10.1080/02786820903401427.
  • Weber, A. P., M. Seipenbusch, and G. Kasper. 2001. Application of aerosol techniques to study the catalytic formation of methane on gasborne nickel nanoparticles. J. Phys. Chem. A 105 (39):8958–8963. doi: 10.1021/jp0115594.
  • Weber, A. P., M. Seipenbusch, C. Thanner, and G. Kasper. 1999. Aerosol catalysis on nickel nanoparticles. J. Nanoparticle Res. 1 (2):253–265. doi: 10.1023/A:1010016919254.
  • Wiedensohler, A., W. Birmili, A. Nowak, A. Sonntag, K. Weinhold, M. Merkel, B. Wehner, T. Tuch, S. Pfeifer, M. Fiebig, et al. 2012. Mobility particle size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions. Atmos. Meas. Tech. 5 (3):657–685. doi: 10.5194/amt-5-657-2012.
  • Zhiqiang, Q., K. Siegmann, A. Keller, U. Matter, L. Scherrer, and H. C. Siegmann. 2000. Nanoparticle air pollution in major cities and its origin. Atmos. Environ. 34 (3):443–451. doi: 10.1016/S1352-2310(99)00252-6.
  • Zhou, L., R. You, J. Tan, and M. R. Zachariah. 2013. Wavelength-resolved UV photoelectric charging dynamics of nanoparticles: comparison of spheres and aggregates. Aerosol. Sci. Technol. 47 (6):672–680. doi: 10.1080/02786826.2013.779630.
  • Zhou, L., and M. R. Zachariah. 2012. Size resolved particle work function measurement of free nanoparticles: Aggregates vs. spheres. Chem. Phys. Lett. 525:77–81. doi: 10.1016/j.cplett.2011.11.045.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.