16,732
Views
94
CrossRef citations to date
0
Altmetric
Review Articles

Bioaerosol sampling: Classical approaches, advances, and perspectives

ORCID Icon
Pages 496-519 | Received 08 Jul 2019, Accepted 19 Sep 2019, Published online: 04 Oct 2019

References

  • ACGIH. 1999. Bioaerosols: Assessment and control, ed. J. M. Macher. Cincinnati, OH: American Conference of Governmental Industrial Hygienists.
  • Adams, R. I., Y. Tian, J. W. Taylor, T. D. Bruns, A. Hyvarinen, and M. Taubel. 2015. Passive dust collectors for assessing airborne microbial material. Microbiome 3 (1):46. UNSP 46 doi:10.1186/s40168-015-0112-7.
  • Agranovski, I. E., V. Agranovski, S. A. Grinshpun, T. Reponen, and K. Willeke. 2002a. Collection of airborne microorganisms into liquid by bubbling through porous medium. Aerosol Sci. Technol. 36 (4):502–509. doi:10.1080/027868202753571322.
  • Agranovski, I. E., V. Agranovski, T. Reponen, K. Willeke, and S. A. Grinshpun. 2002b. Development and evaluation of a new personal sampler for culturable airborne microorganisms. Atmos. Environ. 36 (5):889–898. doi:10.1016/S1352-2310(01)00488-5.
  • Agranovski, I. E., A. S. Safatov, A. I. Borodulin, O. V. Pyankov, V. A. Petrishchenko, A. N. Sergeev, A. A. Sergeev, V. Agranovski, and S. A. Grinshpun. 2005. New personal sampler for viable airborne viruses: Feasibility study. J. Aerosol Sci. 36 (5-6):609–617. doi:10.1016/j.jaerosci.2004.11.014.
  • Aizenberg, V., T. Reponen, S. A. Grinshpun, and K. Willeke. 2000. Performance of air-o-cell, burkard, and button samplers for total enumeration of airborne spores. Am. Ind. Hygiene Assoc. J. 61 (6):855–864. doi:10.1202/0002-8894(2000)061<0855:POAOCB>2.0.CO;2.
  • Alburty, D., Murowchick, P. Z. Packingham, A. Page, T. Davis, and D. W. II. 2010. Integration of a hydrosol concentrator with an aerosol to hydrosol sampler for fluid reuse and improved concentration factors, in Abstract 446, AAAR 29th Annual Conference. Portland, OR.
  • Amato, P., R. Hennebelle, O. Magand, M. Sancelme, A.-M. Delort, C. Barbante, C. Boutron, and C. Ferrari. 2007. Bacterial characterization of the snow cover at Spitzberg, Svalbard. FEMS Microbiol. Ecol. 59:255–264. doi:10.1111/j.1574-6941.2006.00198.x.
  • Andersen, A. A. 1958. New sampler for the collection, sizing, and enumeration of viable airborne particles. J. Bacteriol. 76 (5):471–484.
  • Anderson, B. D., M. Ma, Y. Xia, T. Wang, B. Shu, J. A. Lednicky, M. J. Ma, J. Lu, and G. C. Gray. 2016. Bioaerosol sampling in modern agriculture: A novel approach for emerging pathogen surveillance? J. Infect. Dis. 214:537–545. doi:10.1093/infdis/jiw180.
  • Asefa, D. T., S. Langsrud, R. O. Gjerde, C. F. Kure, M. S. Sidhu, T. Nesbakken, and I. Skaar. 2009. The performance of sas-super-180 air sampler and settle plates for assessing viable fungal particles in the air of dry-cured meat production facility. Food Control 20 (11):997–1001. doi:10.1016/j.foodcont.2008.11.011.
  • Berry, C. M. 1941. An electrostatic method for collecting bacteria from air. Public Health Reports (1896-1970). 56:2044–2051.
  • Bowers, R. M., N. Clements, J. B. Emerson, C. Wiedinmyer, M. P. Hannigan, and N. Fierer. 2013. Seasonal variability in bacterial and fungal diversity of the near-surface atmosphere. Environ. Sci. Technol. 47:12097–12106. doi:10.1021/es402970s.
  • Brown, R. C., M. A. Hemingway, D. Wake, and J. Thompson. 1995. Field trials of an electret-based passive dust sampler in metal-processing industries. Ann. Occup. Hyg. 39 (5):603–622. doi:10.1093/annhyg/39.5.603.
  • Burge, H. A., and W. R. Solomon. 1987. Sampling and analysis of biological aerosols. Atmos. Environ. 21 (2):451–456. doi:10.1016/0004-6981(87)90026-6.
  • Burton, N. C., S. A. Grinshpun, and T. Reponen. 2007. Physical collection efficiency of filter materials for bacteria and viruses. Ann. Occup. Hyg. 51:143–151. doi:10.1093/annhyg/mel073.
  • Buttner, M. P., and L. D. Stetzenbach. 1993. Monitoring airborne fungal spores in an experimental indoor environment to evaluate sampling methods and the effects of human activity on air sampling. Appl. Environ. Microb. 59:219–226.
  • Calderon, C., E. Ward, J. Freeman, and A. McCartney. 2002. Detection of airborne fungal spores sampled by rotating-arm and Hirst-type spore traps using polymerase chain reaction assays. J. Aerosol Sci. 33 (2):283–296. doi:10.1016/S0021-8502(01)00179-3.
  • Cao, G., J. D. Noti, F. M. Blachere, W. G. Lindsley, and D. H. Beezhold. 2011. Development of an improved methodology to detect infectious airborne influenza virus using the NIOSH bioaerosol sampler. J. Environ. Monit. 13 (12):3321–3328. doi:10.1039/c1em10607d.
  • Chang, C. W., and F. C. Chou. 2011. Assessment of bioaerosol sampling techniques for viable Legionella pneumophila by ethidium monoazide quantitative PCR. Aerosol Sci. Technol. 45 (3):343–351. doi:10.1080/02786826.2010.537400.
  • Chang, C. W., and P. Y. Hung. 2012. Evaluation of sampling techniques for detection and quantification of airborne legionellae at biological aeration basins and shower rooms. J. Aerosol Sci. 48:63–74. doi:10.1016/j.jaerosci.2012.02.003.
  • Chang, C.-W., Y.-T. Ting, and Y.-J. Horng. 2019. Collection efficiency of liquid-based samplers for fungi in indoor air. Indoor Air 29 (3):380–389. doi:10.1111/ina.12535.
  • Chatigny, M. A., J. M. Macher, H. A. Burge, W. R. Solomon. 1989. Sampling airborne microorganisms and aeroallergens. In Air sampling instruments for evaluation of atmospheric contaminants, ed. S. V. Hering, 199–220. Cincinnati: ACGIH.
  • Chen, H., and M. Yao. 2018. A high-flow portable biological aerosol trap (highbiotrap) for rapid microbial detection. J. Aerosol Sci. 117:212–223. doi:10.1016/j.jaerosci.2017.11.012.
  • Choi, D. Y., K. J. Heo, J. Kang, E. J. An, S.-H. Jung, B. U. Lee, H. M. Lee, and J. H. Jung. 2018. Washable antimicrobial polyester/aluminum air filter with a high capture efficiency and low pressure drop. J. Hazard. Mater. 351:29–37. doi:10.1016/j.jhazmat.2018.02.043.
  • Choi, J., S. C. Hong, W. Kim, and J. H. Jung. 2017. Highly enriched, controllable, continuous aerosol sampling using inertial microfluidics and its application to real-time detection of airborne bacteria. ACS Sensors 2 (4):513–521. doi:10.1021/acssensors.6b00753.
  • Codina, R., R. Fox, R. Lockey, P. DeMarco, and A. Bagg. 2008. Typical levels of airborne fungal spores in houses without obvious moisture problems during a rainy season in Florida, USA. J. Investig. Allergol. Clin. Immunol. 18:156.
  • Cox, C. S. 1987. The aerobiological pathway of microorganisms. Chichester, UK: Wiley.
  • Cox, J., R. Indugula, S. Vesper, Z. Zhu, R. Jandarov, and T. Reponen. 2017. Comparison of indoor air sampling and dust collection methods for fungal exposure assessment using quantitative PCR. Environ. Sci. Processes Impacts 19:1312–1319. doi:10.1039/C7EM00257B.
  • Cox, J., and W. G. Lindsley. 2019. Bioaerosol indoor field studies. Aerosol Sci. Technol., in review.
  • Cox, C. S., and C. M. Wathes. 1995. Bioaerosols handbook. Boca Raton: CRC. Lewis Publishers.
  • Crook, B. 1995. Non-inertial samplers: Biological perspectives. In Bioaerosols handbook, ed. C. S. Cox and C. M. Wathes, 269–283: Boca Raton: Lewis Publishers;.
  • Cross, E. S., T. B. Onasch, A. Ahern, W. Wrobel, J. G. Slowik, J. Olfert, D. A. Lack, P. Massoli, C. D. Cappa, J. P. Schwarz, et al. 2010. Soot particle studies—instrument inter-comparison—project overview. Aerosol Sci. Technol. 44 (8):592–611. doi:10.1080/02786826.2010.482113.
  • Dabisch, P., K. Bower, B. Dorsey, and L. Wronka. 2012. Recovery efficiencies for Burkholderia thailandensis from various aerosol sampling media. Front. Cell. Infect. Microbiol. 2:78–78. doi:10.3389/fcimb.2012.00078.
  • Douwes, J., P. Thorne, N. Pearce, and D. Heederik. 2003. Bioaerosol health effects and exposure assessment: Progress and prospects. Ann. Occup. Hyg. 47:187–200. doi:10.1093/annhyg/meg032.
  • Dungan, R. S., and A. B. Leytem. 2016. Recovery of culturable Escherichia coli o157:H7 during operation of a liquid-based bioaerosol sampler. Aerosol Sci. Technol. 50 (1):71–75. doi:10.1080/02786826.2015.1126666.
  • Duquenne, P., G. Marchand, and C. Duchaine. 2013. Measurement of endotoxins in bioaerosols at workplace: A critical review of literature and a standardization issue. Ann. Occup. Hyg. 57:137–172. doi:10.1093/annhyg/mes051.
  • Fahlgren, C., G. Bratbak, R.-A. Sandaa, R. Thyrhaug, and U. L. Zweifel. 2011. Diversity of airborne bacteria in samples collected using different devices for aerosol collection. Aerobiologia 27 (2):107–120. doi:10.1007/s10453-010-9181-z.
  • Fan, C., Y. Li, P. Liu, F. Mu, Z. Xie, R. Lu, Y. Qi, B. Wang, and C. Jin. 2019. Characteristics of airborne opportunistic pathogenic bacteria during autumn and winter in Xi'an, China. Sci. Total Environ. 672:834–845. doi:10.1016/j.scitotenv.2019.03.412.
  • Farnsworth, J. E., S. M. Goyal, S. W. Kim, T. H. Kuehn, P. C. Raynor, M. A. Ramakrishnan, S. Anantharaman, and W. Tang. 2006. Development of a method for bacteria and virus recovery from heating, ventilation, and air conditioning (HVAC) filters. J. Environ. Monit. 8 (10):1006–1013. doi:10.1039/b606132j.
  • Fineberg, H. V. 2014. Pandemic preparedness and response—lessons from the h1n1 influenza of 2009. N. Engl. J. Med. 370 (14):1335–1342.
  • Foat, T. G., W. J. Sellors, M. D. Walker, P. A. Rachwal, J. W. Jones, D. D. Despeyroux, L. Coudron, I. Munro, D. K. McCluskey, C. K. L. Tan, and M. C. Tracey. 2016. A prototype personal aerosol sampler based on electrostatic precipitation and electrowetting-on-dielectric actuation of droplets. J. Aerosol Sci. 95:43–53. doi:10.1016/j.jaerosci.2016.01.007.
  • Frankel, M., M. Timm, E. W. Hansen, and A. M. Madsen. 2012. Comparison of sampling methods for the assessment of indoor microbial exposure. Indoor Air 22 (5):405–414. doi:10.1111/j.1600-0668.2012.00770.x.
  • Fröhlich-Nowoisky, J., C. J. Kampf, B. Weber, J. A. Huffman, C. Pöhlker, M. O. Andreae, N. Lang-Yona, S. M. Burrows, S. S. Gunthe, W. Elbert, et al. 2016. Bioaerosols in the earth system: Climate, health, and ecosystem interactions. Atmos. Res. 182:346–376. doi:10.1016/j.atmosres.2016.07.018.
  • Gallup, D., J. Purves, and H. Burge. 2004. A disposable sampler for collecting volumetric air samples onto agar media. J. Allergy Clin. Immunol. 113:S138.
  • Gast, R. K., B. W. Mitchell, and P. S. Holt. 2004. Detection of airborne Salmonella enteritidis in the environment of experimentally infected laying hens by an electrostatic sampling device. Avian Dis. 48 (1):148–154. doi:10.1637/7086.
  • Gerone, P. J., R. B. Couch, G. V. Keefer, R. G. Douglas, E. B. Derrenbacher, and V. Knight. 1966. Assessment of experimental and natural viral aerosols. Bacteriol. Rev. 30 (3):576–588.
  • Ghosh, B., H. Lal, and A. Srivastava. 2015. Review of bioaerosols in indoor environment with special reference to sampling, analysis and control mechanisms. Environ. Int. 85:254–272.
  • Godish, D., and T. Godish. 2008. Total airborne mold particle sampling: Evaluation of sample collection, preparation and counting procedures, and collection devices. J. Occup. Environ. Hyg. 5 (2):100–106. doi:10.1080/15459620701828310.
  • Gordon, J., P. Gandhi, G. Shekhawat, A. Frazier, J. Hampton-Marcell, and J. A. Gilbert. 2015. A simple novel device for air sampling by electrokinetic capture. Microbiome 3 (1):1–8. doi:10.1186/s40168-015-0141-2.
  • Görner, P., J.-F. Fabriès, P. Duquenne, O. Witschger, and R. Wrobel. 2006. Bioaerosol sampling by a personal rotating cup sampler CIP 10-m. J. Environ. Monit. JEM 8 (1):43–48. doi:10.1039/b508671j.
  • Górny, R. L. 2020. Microbial aerosols: Sources, properties, health effects, exposure assessment—A review. KONA Powder Particle J. 2020005. doi:10.14356/kona.2020005.
  • Griffiths, W. D., and I. W. Stewart. 1999. Performance of bioaerosol samplers used by the UK biotechnology industry. J. Aerosol Sci. 30 (8):1029. doi:10.1016/S0021-8502(98)00783-6.
  • Grinshpun, S. A., M. P. Buttner, G. Mainelis, and K. Willeke. 2015. Sampling for airborne microorganisms. In Manual of environmental microbiology, ed. M.V. Yates, C. H. Nakatsu, R.V. Miller, and S. D. Pillai, 3.2.2-1-3.2.2-17. Washington, DC: American Society for Microbiology.
  • Grinshpun, S. A., C.-W. Chang, A. Nevalainen, and K. Willeke. 1994. Inlet characteristics of bioaerosol samplers. J. Aerosol Sci. 25 (8):1503–1522.
  • Grinshpun, S., K. Willeke, and S. Kalatoor. 1993. A general equation for aerosol aspiration by thin-walled sampling probes in calm and moving air. Atmos. Environ. 27A:1459–1470.
  • Grinshpun, S. A., K. Willeke, V. Ulevicius, A. Juozaitis, S. Terzieva, J. Donnelly, G. N. Stelma, and K. P. Brenner. 1997. Effect of impaction, bounce and reaerosolization on the collection efficiency of impingers. Aerosol Sci. Technol. 26 (4):326–342.
  • Haig, C. W., W. G. Mackay, J. T. Walker, and C. Williams. 2016. Bioaerosol sampling: Sampling mechanisms, bioefficiency and field studies. J. Hospital Infect. 93 (3):242–255. doi:10.1016/j.jhin.2016.03.017.
  • Han, T., H. R. An, and G. Mainelis. 2010. Performance of an electrostatic precipitator with superhydrophobic surface when collecting airborne bacteria. Aerosol Sci. Technol. 44 (5):339–348. doi:10.1080/02786821003649352.
  • Han, T. W., and G. Mainelis. 2012. Investigation of inherent and latent internal losses in liquid-based bioaerosol samplers. J. Aerosol Sci. 45:58–68. doi:10.1016/j.jaerosci.2011.11.001.
  • Han, T., and G. Mainelis. 2008. Design and development of an electrostatic sampler for bioaerosols with high concentration rate. J. Aerosol Sci. 39 (12):1066–1078. doi:10.1016/j.jaerosci.2008.07.009.
  • Han, T., Y. Nazarenko, P. J. Lioy, and G. Mainelis. 2011. Collection efficiencies of an electrostatic sampler with superhydrophobic surface for fungal bioaerosols. Indoor Air 21 (2):110–120.
  • Han, T. T., N. M. Thomas, and G. Mainelis. 2017. Design and development of a self-contained personal electrostatic bioaerosol sampler (PEBS) with a wire-to-wire charger. Aerosol Sci. Technol. 51 (8):903–915. doi:10.1080/02786826.2017.1329516.
  • Han, T. T., N. M. Thomas, and G. Mainelis. 2018. Performance of personal electrostatic bioaerosol sampler (PEBS) when collecting airborne microorganisms. J. Aerosol Sci. 124:54–67. doi:10.1016/j.jaerosci.2018.07.004.
  • Han, T., M. Wren, K. DuBois, J. Therkorn, and G. Mainelis. 2015a. Development of ATP bioluminescence method for rapid bioaerosol quantification. J. Aerosol Sci. 90:114–1123. doi:10.1016/j.jaerosci.2015.08.003.
  • Han, T., H. Zhen, D. E. Fennell, and G. Mainelis. 2015b. Design and evaluation of the field-deployable electrostatic precipitator with superhydrophobic surface (FDEPSS) with high concentration rate. Aerosol Air Quality Res. 15 (6):2397–2408.
  • He, Q., and M. Yao. 2011. Integration of high volume portable aerosol-to-hydrosol sampling and qPCR in monitoring bioaerosols. J. Environ. Monit. 13 (3):706–712. doi:10.1039/c0em00559b.
  • Herr, C. E., A. Zur Nieden, M. Jankofsky, N. I. Stilianakis, R. H. Boedeker, and T. F. Eikmann. 2003. Effects of bioaerosol polluted outdoor air on airways of residents: A cross sectional study. Occup. Environ. Med. 60 (5):336–342.
  • Hinds, W. C. 1999. Aerosol technology: Properties, behavior, and measurement of airborne particles. Hoboken, New Jersey: Wiley-Blackwell.
  • Hindson, B. J., S. B. Brown, G. D. Marshall, M. T. McBride, A. J. Makarewicz, D. M. Gutierrez, D. K. Wolcott, T. R. Metz, R. S. Madabhushi, J. M. Dzenitis, and B. W. Colston Jr. 2004. Development of an automated sample preparation module for environmental monitoring of biowarfare agents. Anal. Chem. 76 (13):3492–3497.
  • Hindson, B. J., A. J. Makarewicz, U. S. Setlur, B. D. Henderer, M. T. McBride, and J. M. Dzenitis. 2005a. APDS: The autonomous pathogen detection system. Biosensors Bioelectron. 20 (10):1925–1931.
  • Hindson, B. J., M. T. McBride, A. J. Makarewicz, B. D. Henderer, U. S. Setlur, S. M. Smith, D. M. Gutierrez, T. R. Metz, S. L. Nasarabadi, K. S. Venkateswaran, et al. 2005b. Autonomous detection of aerosolized biological agents by multiplexed immunoassay with polymerase chain reaction confirmation. Anal. Chem. 77 (1):284–289.
  • Hirst, J. M. 1952. An automatic volumetric spore trap. Ann. Appl. Biol. 39 (2):257–265.
  • Hogan, C. J., E. M. Kettleson, M. H. Lee, B. Ramaswami, L. T. Angenent, and P. Biswas. 2005. Sampling methodologies and dosage assessment techniques for submicrometre and ultrafine virus aerosol particles. J. Appl. Microbiol. 99 (6):1422–1434. doi:10.1111/j.1365-2672.2005.02720.x.
  • Hogan, C. J., M.-H. Lee, and P. Biswas. 2004. Capture of viral particles in soft X-ray–enhanced corona systems: Charge distribution and transport characteristics. Aerosol Sci. Technol. 38 (5):475–486.
  • Hoisington, A. J., J. P. Maestre, M. D. King, J. A. Siegel, and K. A. Kinney. 2014. Impact of sampler selection on the characterization of the indoor microbiome via high-throughput sequencing. Build. Environ. 80:274–282. doi:10.1016/j.buildenv.2014.04.021.
  • Hong, S., J. Bhardwaj, C.-H. Han, and J. Jang. 2016. Gentle sampling of submicrometer airborne virus particles using a personal electrostatic particle concentrator. Environ. Sci. Technol. 50 (22):12365–12372. doi:10.1021/acs.est.6b03464.
  • Hubbard, J. A., J. S. Haglund, O. A. Ezekoye, and A. R. McFarland. 2011. Liquid consumption of wetted wall bioaerosol sampling cyclones: Characterization and control. Aerosol. Sci. Technol. 45 (2):172–182. doi:10.1080/02786826.2010.528806.
  • Hunter, D. M., S. D. Leskinen, S. Magaña, S. M. Schlemmer, and D. V. Lim. 2011. Dead-end ultrafiltration concentration and IMS/ATP-bioluminescence detection of Escherichia coli o157:H7 in recreational water and produce wash. J. Microbiol. Methods 87 (3):338–342. doi:10.1016/j.mimet.2011.09.010.
  • Hurley, K. V., L. Wharton, M. J. Wheeler, C. A. Skjøth, C. Niles, and M. C. Hanson. 2019. Car cabin filters as sampling devices to study bioaerosols using EDNA and microbiological methods. Aerobiologia 35 (2):215–225. doi:10.1007/s10453-018-09554-y.
  • Jang, J.,. N. B. Hendriksen, H. H. Jakobsen, and U. Gosewinkel. 2018. Application of cytosense flow cytometer for the analysis of airborne bacteria collected by a high volume impingement sampler. J. Microbiol. Methods 154:63. doi:10.1016/J.MIMET.2018.10.012.
  • Jensen, P. A., B. Lighthart, A. J. Mohr, and B. T. Shaffer. 1994. Instrumentation used with microbial bioaerosol. In Atmospheric microbial aerosols, theory and applications, ed. B. Lighthart and A. J. Mohr, 226–284. New York: Chapman and Hall.
  • Jensen, P. A., W. F. Todd, G. N. Davis, and P. V. Scarpino. 1992. Evaluation of eight bioaerosol samplers challenged with aerosols of free bacteria. Am. Ind. Hyg. Assoc. J. 53 (10):660–667.
  • Jones, W., K. Morring, P. Morey, and W. Sorenson. 1985. Evaluation of the Andersen viable impactor for single stage sampling. Am. Ind. Hyg. Assoc. J. 46 (5):294–298.
  • Jones, J.,. P. Wagle, and L. Bielory. 2018. Pollen counting samplers trends from 1963-2016. J. Allergy Clin. Immunol. 141:AB29.
  • Kalatoor, S., S. A. Grinshpun, K. Willeke, and P. Baron. 1995. New aerosol sampler with low wind sensitivity and good filter collection uniformity. Atmos. Environ. 29 (10):1105–1112.
  • Kang, S. M., K. J. Heo, and B. U. Lee. 2015. Why does rain increase the concentrations of environmental bioaerosols during monsoon. Aerosol Air Qual. Res. 15 (6):2320–2324.
  • Kang, J. S., K. S. Lee, K. H. Lee, H. J. Sung, and S. S. Kim. 2012. Characterization of a microscale Cascade impactor. Aerosol Sci. Technol. 46 (9):966–972. doi:10.1080/02786826.2012.685115.
  • Kenny, L. C., A. Bowry, B. Crook, and J. D. Stancliffe. 1999. Field testing of a personal size-selective bioaerosol sampler. Ann. Occup. Hyg. 43 (6):393–404.
  • Kenny, L. C., J. D. Stancliffe, B. Crook, S. Stagg, W. D. Griffiths, I. W. Stewart, and S. J. Futter. 1998. The adaptation of existing personal inhalable aerosol samplers for bioaerosol sampling. Am. Ind. Hyg. Assoc. J. 59 (12):831–841.
  • Kesavan, J. 2012. Sampling and retention efficiencies of batch-type liquid-based bioaerosol samplers — aerosol science and technology. 44:817–829. doi:10.1080/02786826.2010.497513.
  • Kettleson, E. M., B. Ramaswami, C. J. Hogan, Jr., M.-H. Lee, G. A. Statyukha, P. Biswas, and L. T. Angenent. 2009. Airborne virus capture and inactivation by an electrostatic particle collector. Environ. Sci. Technol. 43 (15):5940–5946. doi:10.1021/es803289w.
  • Kilburg-Basnyat, B., N. Metwali, and P. S. Thorne. 2014. Effect of deployment time on endotoxin and allergen exposure assessment using electrostatic dust collectors. Ann. Work Expo. Health 59:104–115. doi:10.1093/annhyg/meu063.
  • Kilburg-Basnyat, B.,. N. Metwali, and P. S. Thorne. 2016. Performance of electrostatic dust collectors (EDCs) for endotoxin assessment in homes: Effect of mailing, placement, heating, and electrostatic charge. J. Occup. Environ. Hyg. 13 (2):85–93. doi:10.1080/15459624.2015.1078468.
  • King, M. D. 2019. Assays and enumeration. Aerosol Sci. Technol., in review.
  • King, M. D., and A. R. McFarland. 2012. Bioaerosol sampling with a wetted wall cyclone: Cell culturability and DNA integrity of Escherichia coli bacteria. Aerosol Sci. Technol. 46 (1):82–93. doi:10.1080/02786826.2011.605400.
  • King, M. D., B. F. Thien, S. Tiirikainen, and A. R. McFarland. 2009. Collection characteristics of a batch-type wetted wall bioaerosol sampling cyclone. Aerobiologia 25 (4):239–247. doi:10.1007/s10453-009-9129-3.
  • Ladhani, L., G. Pardon, H. Meeuws, L. Van Wesenbeeck, K. Schmidt, L. Stuyver, and W. Van Der Wijngaart. 2017. Sampling and detection of airborne influenza virus towards point-of-care applications. PLoS One 12 (3):e0174314. doi:10.1371/journal.pone.0174314..
  • Langlois, R. G., S. Brown, B. Colston, L. Jones, D. Masquelier, P. Meyer, M. McBride, S. Nasarabi, A. J. Ramponi, K. Venkateswaran, and F. Milanowich. 2000. Development of an autonomous pathogen detection system. In Abstracts of the first joint conference on point detection, 227–234. Williamsburg, VA.
  • Lednicky, J., M. Pan, J. Loeb, H. Hsieh, A. Eiguren-Fernandez, S. Hering, Z. H. Fan, and C.-Y. Wu. 2016. Highly efficient collection of infectious pandemic influenza H1N1 virus (2009) through laminar-flow water based condensation. Aerosol Sci. Technol. 50 (7):i–iv. doi:10.1080/02786826.2016.1179254.
  • Lee, S. A., K. Willeke, G. Mainelis, A. Adhikari, H. X. Wang, T. Reponen, and S. A. Grinshpun. 2004. Assessment of electrical charge on airborne microorganisms by a new bioaerosol sampling method. J. Occup. Environ. Hyg. 1 (3):127–138. doi:10.1080/15459620490424357.
  • Levetin, E. 2004. Methods for aeroallergen sampling. Curr. Allergy Asthma Reports 4 (5):376–383.
  • Liebers, V., V. van Kampen, J. Bünger, M. Düser, H. Stubel, T. Brüning, and M. Raulf-Heimsoth. 2012. Assessment of airborne exposure to endotoxin and pyrogenic active dust using electrostatic dustfall collectors (EDCs). J. Toxicol. Environ. Health-Part A-Current Issues 75 (8-10):501–507. doi:10.1080/15287394.2012.674919.
  • Lighthart, B. 1997. The ecology of bacteria in the alfresco atmosphere. FEMS Microbiol. Ecol. 23 (4):263–274. doi:10.1111/j.1574-6941.1997.tb00408.x.
  • Li, J., A. Leavey, Y. Wang, C. O’Neil, M. A. Wallace, C.-A. D. Burnham, A. C. Boon, H. Babcock, and P. Biswas. 2018. Comparing the performance of 3 bioaerosol samplers for influenza virus. J. Aerosol Sci. 115 :133–145. doi:10.1016/j.jaerosci.2017.08.007.
  • Li, S.-N., D. A. Lundgren, and D. Rovell-Rixx. 2000. Evaluation of six inhalable aerosol samplers. AIHAJ - Amer. Ind. Hyg. Assoc. 61 (4):506–516.
  • Lindsley, W. G. 2017a. Filter pore size and aerosol sample collection. In NIOSH manual of analytical methods. Cincinnati: National Institute for Occupational Safety and Health.
  • Lindsley, W. G., F. M. Blachere, R. E. Thewlis, A. Vishnu, K. A. Davis, G. Cao, J. E. Palmer, K. E. Clark, M. A. Fisher, R. Khakoo, and D. H. Beezhold. 2010. Measurements of airborne influenza virus in aerosol particles from human coughs. PLoS One 5 (11):e15100. doi:10.1371/journal.pone.0015100..
  • Lindsley, W. G., B. J. Green, F. M. Blachere, S. B. Martin, B. Law, P. Jensen, and M. Schafer. 2017b. Sampling and characterization of bioaerosols. In Niosh manual of analytical methods. Cincinnati: National Institute for Occupational Safety and Health.
  • Lindsley, W. G., D. Schmechel, and B. T. Chen. 2006. A two-stage cyclone using microcentrifuge tubes for personal bioaerosol sampling. J. Environ. Monit. 8 (11):1136–1142. doi:10.1039/B609083d.
  • Lin, X. J., T. A. Reponen, K. Willeke, S. A. Grinshpun, K. K. Foarde, and D. S. Ensor. 1999. Long-term sampling of airborne bacteria and fungi into a non-evaporating liquid. Atmos. Environ. 33 (26):4291–4298. doi:10.1016/S1352-2310(99)00169-7.
  • Lin, X., T. Reponen, K. Willeke, Z. Wang, S. A. Grinshpun, and M. Trunov. 2000. Survival of airborne microorganisms during swirling aerosol collection. Aerosol Sci. Technol. 32 (3):184–196.
  • Lin, X., K. Willeke, V. Ulevicius, and S. A. Grinshpun. 1997. Effect of sampling time on the collection efficiency of all-glass impingers. Am. Ind. Hyg. Assoc. J. 58 (7):480–488.
  • Liu, K., Z. Wen, N. Li, W. Yang, J. Wang, L. Hu, X. Dong, J. Lu, and J. Li. 2012. Impact of relative humidity and collection media on mycobacteriophage d29 aerosol. Appl. Environ. Microbiol. 78 (5):1466–1472. doi:10.1128/aem.06610-11.
  • Li, Z., X. Xu, L. A. Thompson, H. E. Gross, E. A. Shenkman, D. A. DeWalt, and I. C. Huang. 2019. Longitudinal effect of ambient air pollution and pollen exposure on asthma control: The patient-reported outcomes measurement information system (PROMIS) pediatric asthma study. Acad. Pediatrics 19 (6):615. doi:10.1016/j.acap.2019.03.010.
  • Lundholm, I. M. 1982. Comparison of methods for quantitative determinations of airborne bacteria and evaluation of total viable counts. Appl. Environ. Microb. 44:179–183.
  • Ma, Z., Y. Zheng, Y. Cheng, S. Xie, X. Ye, and M. Yao. 2016. Development of an integrated microfluidic electrostatic sampler for bioaerosol. J. Aerosol Sci. 95:84–94. doi:10.1016/j.jaerosci.2016.01.003.
  • Macher, J., B. Chen, and C. Rao. 2008. Field evaluation of a personal, bioaerosol cyclone sampler. J. Occup. Environ. Hyg. 5 (11):724–734. doi:10.1080/15459620802400159.
  • Macher, J. M., and M. W. First. 1983. Reuter centrifugal air sampler: Measurement of effective airflow rate and collection efficiency. Appl. Environ. Microbial. 45:1960–1962.
  • Madsen, A. M., and A. K. Sharma. 2008. Sampling of high amounts of bioaerosols using a high-volume electrostatic field sampler. Ann. Occup. Hyg. 52 (3):167–176. doi:10.1093/annhyg/men004.
  • Maestre, J. P., W. Jennings, D. Wylie, S. D. Horner, J. Siegel, and K. A. Kinney. 2018. Filter forensics: Microbiota recovery from residential HVAC filters. Microbiome 6 (1):22. doi:10.1186/s40168-018-0407-6.
  • Mahida, N., K. Prescott, C. Yates, F. Spencer, V. Weston, and T. Boswell. 2018. Outbreak of invasive group a streptococcus: Investigations using agar settle plates detect perineal shedding from a healthcare worker. J. Hospital Infect. 100 (4):e209–e215. doi:10.1016/j.jhin.2018.03.029.
  • Mainelis, G., A. Adhikari, K. Willeke, S. A. Lee, T. Reponen, and S. A. Grinshpun. 2002a. Collection of airborne microorganisms by a new electrostatic precipitator. J. Aerosol Sci. 33 (10):1417–1432. doi:10.1016/S0021-8502(02)00091-5.
  • Mainelis, G., S. A. Grinshpun, K. Willeke, T. Reponen, V. Ulevicius, and P. J. Hintz. 1999. Collection of airborne microorganisms by electrostatic precipitation. Aerosol Sci. Technol. 30 (2):127–144. doi:10.1080/027868299304732.
  • Mainelis, G., and M. Tabayoyong. 2010. The effect of sampling time on the overall performance of portable microbial impactors. Aerosol Sci. Technol. 44 (1):75–82. doi:10.1080/02786820903390372.
  • Mainelis, G., K. Willeke, A. Adhikari, T. Reponen, and S. A. Grinshpun. 2002b. Design and collection efficiency of a new electrostatic precipitator for bioaerosol collection. Aerosol sci. Technol. 36 (11):1073–1085. doi:10.1080/02786820290092212.
  • Mandrioli, P., G. L. Puppi, N. Bagni, and F. Prodi. 1973. Distribution of microorganisms in hailstones. Nature 246 (5433):416–417. doi:10.1038/246416a0.
  • Mattei, D. I., C. A. Bleckmann, D. J. Bunker, and I. Maxis. 2009. The use of spider webs as passive bioaerosol collectors. 73240W-73240W–773249.
  • Mbareche, H., M. Veillette, G. J. Bilodeau, and C. Duchaine. 2018. Bioaerosol sampler choice should consider efficiency and ability of samplers to cover microbial diversity. Appl. Environ. Microbiol. 84 (23):e01589–01518. doi:10.1128/AEM.01589-18.
  • McDevitt, J. J., P. Koutrakis, S. T. Ferguson, J. M. Wolfson, M. P. Fabian, M. Martins, J. Pantelic, and D. K. Milton. 2013. Development and performance evaluation of an exhaled-breath bioaerosol collector for influenza virus. Aerosol Sci. Technol. 47 (4):444–451. doi:10.1080/02786826.2012.762973.
  • McFarland, A. R., J. S. Haglund, M. D. King, S. S. Hu, M. S. Phull, B. W. Moncla, and Y. Seo. 2010. Wetted wall cyclones for bioaerosol sampling. Aerosol Sci. Technol. 44 (4):241–252. doi:10.1080/02786820903555552.
  • Meadow, J. F., A. E. Altrichter, A. C. Bateman, J. Stenson, G. Z. Brown, and J. L. Green. 2015. Humans differ in their personal microbial cloud. PeerJ 3: e1258. doi:10.7717/peerj.1258.
  • Mhuireach, G., B. R. Johnson, A. E. Altrichter, J. Ladau, J. F. Meadow, K. S. Pollard, and J. L. Green. 2016. Urban greenness influences airborne bacterial community composition. Sci. Total Environ. 571:680–687. doi:10.1016/j.scitotenv.2016.07.037.
  • Michel, D., M. W. Rotach, R. Gehrig, and R. Vogt. 2012. On the efficiency and correction of vertically oriented blunt bioaerosol samplers in moving air. Int. J. Biometeorol. 56 (6):1113. doi:10.1007/s00484-012-0526-x.
  • Nevalainen, A., J. Pastuszka, F. Liebhaber, and K. Willeke. 1992. Performance of bioaerosol samplers: Collection characteristics and sampler design considerations. Atmos. Environ. 26A:531–540. doi:10.1016/0960-1686(92)90166-I.
  • Nieto-Caballero, M., N. Savage, P. Keady, and M. Hernandez. 2019. High fidelity recovery of airborne microbial genetic materials by direct condensation capture into genomic preservatives. j. Microbiological Methods 157:1–3. doi:10.1016/j.mimet.2018.12.010.
  • NIOSH. 2017. Manual of analytical methods (nmam®), ed. K. Ashley and P. F. O'Connor. Cincinnati: National Institute for Occupational Safety and Health.
  • Noss, I., I. M. Wouters, M. Visser, D. J. J. Heederik, P. S. Thorne, B. Brunekreef, and G. Doekes. 2008. Evaluation of a low-cost electrostatic dust fall collector for indoor air endotoxin exposure assessment. Appl. Environ. Microbiol. 74:5621–5627. doi:10.1128/AEM.00619-08.
  • Oh, H.-J., and G. Mainelis. 2017. Evaluation of two concentrating techniques for bioaerosol quantification. In 36th annual meeting of the American association for aerosol research. Raleigh, North Carolina.
  • Pan, M., L. Carol, J. A. Lednicky, A. Eiguren-Fernandez, S. Hering, Z. H. Fan, and C.-Y. Wu. 2019. Determination of the distribution of infectious viruses in aerosol particles using water-based condensational growth technology and a bacteriophage MS2 model. Aerosol Sci. Technol. 53 (5):583–593. doi:10.1080/02786826.2019.1581917.
  • Pan, M., A. Eiguren-Fernandez, H. Hsieh, N. Afshar-Mohajer, S. V. Hering, J. Lednicky, Z. Hugh Fan, and C.-Y. Wu. 2016. Efficient collection of viable virus aerosol through laminar-flow, water-based condensational particle growth. J. Appl. Microbiol. 120 (3):805–815. doi:10.1111/jam.13051.
  • Pardon, G., L. Ladhani, N. Sandström, M. Ettori, G. Lobov, and W. van der Wijngaart. 2015. Aerosol sampling using an electrostatic precipitator integrated with a microfluidic interface. Sensors Actuators B: Chem. 212:344–352. doi:10.1016/j.snb.2015.02.008.
  • Parker, M. L., M. R. McDonald, and G. J. Boland. 2013. Evaluation of air sampling and detection methods to quantify airborne ascospores of Sclerotinia sclerotiorum. Plant Disease 98:32–42. doi:10.1094/PDIS-02-13-0163-RE.
  • Park, J.-W., H. R. Kim, and J. Hwang. 2016. Continuous and real-time bioaerosol monitoring by combined aerosol-to-hydrosol sampling and ATP bioluminescence assay. Anal. Chim. Acta 941:101–107. doi:10.1016/j.aca.2016.08.039.
  • Park, J. W., C. W. Park, S. H. Lee, and J. Hwang. 2015. Fast monitoring of indoor bioaerosol concentrations with ATP bioluminescence assay using an electrostatic rod-type sampler. PLoS One 10:e0125251. doi:10.1371/journal.pone.0125251..
  • Parvaneh, S., L. Elfman, E. Ahlf, R. Nybom, L. H. Elfman, and M. van Hage-Hamsten. 2000. A new method for collecting airborne allergens. Allergy 55 (12):1148–1154. doi:10.1034/j.1398-9995.2000.00652.x.
  • Pauvert, C., M. Buée, V. Laval, V. Edel-Hermann, L. Fauchery, A. Gautier, I. Lesur, J. Vallance, and C. Vacher. 2019. Bioinformatics matters: The accuracy of plant and soil fungal community data is highly dependent on the metabarcoding pipeline. Fungal Ecol. 41:23–33. doi:10.1016/j.funeco.2019.03.005.
  • Pyankov, O. V., I. E. Agranovski, O. Pyankova, E. Mokhonova, V. Mokhonov, A. S. Safatov, and A. A. Khromykh. 2007. Using a bioaerosol personal sampler in combination with real-time PCR analysis for rapid detection of airborne viruses. Environ. Microbiol. 9 (4):992–1000. doi:10.1111/j.1462-2920.2006.01226.x.
  • Rahav, E., N. Belkin, A. Paytan, and B. Herut. 2019. The relationship between air-mass trajectories and the abundance of dust-borne prokaryotes at the SE Mediterranean sea. Atmosphere 10 (5):280. doi:10.3390/atmos10050280.
  • Reponen, T., K. Willeke, and S. Grinshpun. 2011. Biological particle sampling. In Aerosol measurement: Principles, techniques, and applications, ed. P. Kulkarni, P. A. Baron, K. Willeke, xiv. New York: Wiley.
  • Rinsoz, T., P. Duquenne, G. Greff-Mirguet, and A. Oppliger. 2008. Application of real-time PCR for total airborne bacterial assessment: Comparison with epifluorescence microscopy and culture-dependent methods. Atmos. Environ. 42 (28):6767–6774. doi:10.1016/j.atmosenv.2008.05.018.
  • Robbins, C. A., L. J. Swenson, M. L. Nealley, and R. E. Gots. 2000. Health effects of mycotoxins in indoor air: A critical review. Appl. Occup. Environ. Hyg. 15:773–784. doi:10.1080/10473220050129419.
  • Rosebury, T. 1947. Experimental airborne infection. Baltimore: Williams and Wilkins Co.
  • Roux, J. M., O. Kaspari, R. Heinrich, N. Hanschmann, and R. Grunow. 2013. Investigation of a new electrostatic sampler for concentrating biological and non-biological aerosol particles. Aerosol Sci. Technol. 47 (5):463–471. doi:10.1080/02786826.2013.763896.
  • Roux, J. M., R. Sarda-Estève, G. Delapierre, M. H. Nadal, C. Bossuet, and L. Olmedo. 2016. Development of a new portable air sampler based on electrostatic precipitation. Environ. Sci. Pollut. Res. 23 (9):8175–8183. doi:10.1007/s11356-015-5522-3.
  • Šantl-Temkiv, T., P. Amato, U. Gosewinkel, R. Thyrhaug, A. Charton, B. Chicot, K. Finster, G. Bratbak, and J. Löndahl. 2017. High-flow-rate impinger for the study of concentration, viability, metabolic activity, and ice-nucleation activity of ambient bacteria. Environ. Sci. Technol. 51:11224–11234. doi:10.1021/acs.est.7b01480..
  • Sayer, W. J., M. N. MacKnight, and H. W. Wilson. 1972. Hospital airborne bacteria as estimated by the Andersen sampler versus the gravity settling culture plate. Am. J. Clin. Pathol. 58 (5):558–562. doi:10.1093/ajcp/58.5.558.
  • Sayer, W. J., D. B. Shean, and J. Ghosseiri. 1969. Estimation of airborne fungal flora by the Andersen sampler versus the gravity settling plate. J. Allergy 44 (4):214–227. doi:10.1016/0021-8707(69)90088-4.
  • Schneider, R., E. Durr, and C. Giles. 2007. A new spore trap that utilizes electrostatic deposition and scanning electron microscopy. Phytopathology 97:S105–S105.
  • Serrano-Silva, N., and M. C. Calderón-Ezquerro. 2018. Metagenomic survey of bacterial diversity in the atmosphere of Mexico City using different sampling methods. Environ. Pollut. 235:20–29. doi:10.1016/j.envpol.2017.12.035.
  • Sharma, A., E. Clark, J. D. McGlothlin, and S. K. Mittal. 2015. Efficiency of airborne sample analysis platform (ASAP) bioaerosol sampler for pathogen detection. Frontiers Microbiology 6:512 doi:10.3389/fmicb.2015.00512.
  • Simon, X., S. Bau, A. Boivin, P. Duquenne, O. Witschger, and P. Görner. 2016. Physical performances and kinetics of evaporation of the CIP 10-m personal sampler's rotating cup containing aqueous or viscous collection fluid. Aerosol Sci. Technol. 50 (5):507–520. doi:10.1080/02786826.2016.1166173.
  • Smets, W., S. Moretti, S. Denys, and S. Lebeer. 2016. Airborne bacteria in the atmosphere: Presence, purpose, and potential. Atmos. Environ. 139:214–221. doi:10.1016/j.atmosenv.2016.05.038.
  • Smith, D. J., J. D. Ravichandar, S. Jain, D. W. Griffin, H. Yu, Q. Tan, J. Thissen, T. Lusby, P. Nicoll, S. Shedler, et al. 2018. Airborne bacteria in earth's lower stratosphere resemble taxa detected in the troposphere: Results from a new NASA aircraft bioaerosol collector (ABC). Front. Microbiol. 9:1752. doi:10.3389/fmicb.2018.01752.
  • Smither, S. J., T. J. Piercy, L. Eastaugh, J. A. Steward, and M. S. Lever. 2011. An alternative method of measuring aerosol survival using spiders’ webs and its use for the filoviruses. J. Virol. Methods 177 (1):123–127. doi:10.1016/j.jviromet.2011.06.021.
  • Solomon, W. R. 1975. Assessing fungus prevalence in domestic interiors. J. Allergy Clin. Immunol 56 (3):235–242. doi:10.1016/0091-6749(75)90095-0.
  • Speight, S. E., B. A. Hallis, A. M. Bennett, and J. E. Benbough. 1997. Enzyme-linked immunosorbent assay for the detection of airborne microorganisms used in biotechnology. J. Aerosol Sci. 28 (3):483–492. doi:10.1016/S0021-8502(96)00449-1.
  • Spring, A. M., K. M. Docherty, K. D. Domingue, T. V. Kerber, M. M. Mooney, and K. M. Lemmer. 2018. A method for collecting atmospheric microbial samples from set altitudes for use with next-generation sequencing techniques to characterize communities. Air Soil Water Res. 11:117862211878887. doi:10.1177/1178622118788871.
  • Springorum, A. C., M. Clauß, and J. Hartung. 2011. A temperature-controlled agi-30 impinger for sampling of bioaerosols. Aerosol Sci. Technol. 45 (10):1231–1239. doi:10.1080/02786826.2011.588275.
  • Spurgeon, J. 2006. A new filter cassette for the direct microscopic examination of airborne fungal spores. Aerosol Sci. Technol. 40 (11):1025–1051. doi:10.1080/02786820600924960.
  • Stewart, S. L., S. A. Grinshpun, K. Willeke, S. Terzieva, V. Ulevicius, and J. Donnelly. 1995. Effect of impact stress on microbial recovery on an agar surface. Appl. Environ. Microbiol. 61 (4):1232–1239.
  • Su, W. C., A. D. Tolchinsky, B. T. Chen, V. I. Sigaev, and Y. S. Cheng. 2012a. Evaluation of physical sampling efficiency for cyclone-based personal bioaerosol samplers in moving air environments. J. Environ. Monit. 14 (9):2430–2437. doi:10.1039/c2em30299c.
  • Su, W. C., A. D. Tolchinsky, V. I. Sigaev, and Y. S. Cheng. 2012b. A wind tunnel test of newly developed personal bioaerosol samplers. J. Air Waste Manage. Assoc. 62:828–837. doi:10.1080/10962247.2012.681422.
  • Tan, M. M., F. X. Shen, M. S. Yao, and T. Zhu. 2011. Development of an automated electrostatic sampler (AES) for bioaerosol detection. Aerosol Sci. Technol. 45 (9):1154–1160. doi:10.1080/02786826.2011.582193.
  • Temkiv, T. Š., K. Finster, B. M. Hansen, N. W. Nielsen, and U. G. Karlson. 2012. The microbial diversity of a storm cloud as assessed by hailstones. FEMS Microbiol. Ecol. 81 (3):684–695. doi:10.1111/j.1574-6941.2012.01402.x.
  • Temkiv, T. Š. and J. A. Huffman. 2019. Bioaerosol outdoor studies. Aerosol Sci. Technol., in review.
  • Therkorn, J., and G. Mainelis. 2013. Effects of plate agar volume on bioaerosol impactor measurement accuracy. Aerosol Sci. Technol. 47 (12):1353–1362. doi:10.1080/02786826.2013.842954.
  • Therkorn, J., N. Thomas, L. Calderón, J. Scheinbeim, and G. Mainelis. 2017a. Design and development of a passive bioaerosol sampler using polarized ferroelectric polymer film. J. Aerosol Sci. 105:128–144. doi:10.1016/j.jaerosci.2016.12.002.
  • Therkorn, J., N. Thomas, J. Scheinbeim, and G. Mainelis. 2017b. Field performance of a novel passive bioaerosol sampler using polarized ferroelectric polymer films. Aerosol Sci. Technol. 51 (7):787–800. doi:10.1080/02786826.2017.1316830.
  • Thomas, R., L. Bourouba, L. C. Marr, C. Duchaine, J. Londahl, and S. Parker. 2019. Aerosolization of bioaerosols. Aerosol Sci. Technol., in review.
  • Thorne, P. S., M. S. Kiekhaefer, P. Whitten, and K. J. Donham. 1992. Comparison of bioaerosol sampling methods in barns housing swine. Appl. Environ. Microb. 58:2543–2551.
  • Tseng, C. C., P. K. Hsiao, K. C. Chang, W. T. Chen, L. M. Yiin, and C. J. Hsieh. 2014. Optimization of propidium monoazide quantitative PCR for evaluating performances of bioaerosol samplers for sampling airborne Staphylococcus aureus. Aerosol Sci. Technol. 48 (12):1308–1319. doi:10.1080/02786826.2014.985780.
  • Tseng, C.-C., and C.-S. Li. 2005. Collection efficiencies of aerosol samplers for virus-containing aerosols. J. Aerosol Sci. 36 (5-6):593–607. doi:10.1016/j.jaerosci.2004.12.004.
  • USEPA. 1994. A standardized EPA protocol for characterizing indoor air quality in large office buildings: Indoor Air Division, Washington D.C. and Atmospheric Research and Exposure Assessment Laboratory, Research Triangle Park, NC.
  • Van Droogenbroeck, C., M. Van Risseghem, L. Braeckman, and D. Vanrompay. 2009. Evaluation of bioaerosol sampling techniques for the detection of Chlamydophila psittaci in contaminated air. Vet. Microbiol. 135 (1-2):31–37. doi:10.1016/j.vetmic.2008.09.042.
  • Verreault, D., S. Moineau, and C. Duchaine. 2008. Methods for sampling of airborne viruses. Microbiol. Mol. Biol. Rev. 72 (3):413–444. doi:10.1128/MMBR.00002-08.
  • Viegas, C., A. Monteiro, L. Aranha Caetano, T. Faria, E. Carolino, and S. Viegas. 2018a. Electrostatic dust cloth: A passive screening method to assess occupational exposure to organic dust in bakeries. Atmosphere 9 (2):64. doi:10.3390/atmos9020064.
  • Viegas, C., A. Monteiro, M. dos Santos, T. Faria, L. A. Caetano, E. Carolino, A. Quintal Gomes, G. Marchand, N. Lacombe, and S. Viegas. 2018b. Filters from taxis air conditioning system: A tool to characterize driver's occupational exposure to bioburden? Environ. Res. 164:522–529. doi:10.1016/j.envres.2018.03.032.
  • Wagner, J., and J. Macher. 2012. Automated spore measurements using microscopy, image analysis, and peak recognition of near-monodisperse aerosols. Aerosol Sci. Technol. 46 (8):862–873. doi:10.1080/02786826.2012.674232.
  • Walls, H. J., D. S. Ensor, L. A. Harvey, J. H. Kim, R. T. Chartier, S. V. Hering, S. R. Spielman, and G. S. Lewis. 2016. Generation and sampling of nanoscale infectious viral aerosols. Aerosol Sci. Technol. 50 (8):802–811. doi:10.1080/02786826.2016.1191617.
  • Wang, Z., T. Reponen, S. A. Grinshpun, R. L. Górny, and K. Willeke. 2001. Effect of sampling time and air humidity on the bioefficiency of filter samplers for bioaerosol collection. J. Aerosol Sci. 32 (5):661–674. doi:10.1016/S0021-8502(00)00108-7.
  • West, J. S., and R. B. E. Kimber. 2015. Innovations in air sampling to detect plant pathogens. Ann Appl Biol. 166:4–17. doi:10.1111/aab.12191.
  • Willeke, K., X. Lin, and S. A. Grinshpun. 1998. Improved aerosol collection by combined impaction and centrifugal motion. Aerosol Sci. Technol. 28 (5):439–456. doi:10.1080/02786829808965536.
  • Wu, Y., F. X. Shen, and M. S. Yao. 2010. Use of gelatin filter and biosampler in detecting airborne H5N1 nucleotides, bacteria and allergens. J. Aerosol Sci. 41 (9):869–879. doi:10.1016/j.jaerosci.2010.05.006.
  • Wubulihairen, M., X. Lu, P. K. H. Lee, and Z. Ning. 2015. Development and laboratory evaluation of a compact swirling aerosol sampler (SAS) for collection of atmospheric bioaerosols. Atmos. Pollut. Res. doi:10.5094/apr.2015.062.
  • Xu, Z., K. Wei, Y. Wu, F. Shen, Q. Chen, M. Li, and M. Yao. 2013. Enhancing bioaerosol sampling by Andersen impactors using mineral-oil-spread agar plate. PLoS One 8 doi:10.1371/journal.pone.0056896.
  • Xu, Z., and M. Yao. 2011. Analysis of culturable bacterial and fungal aerosol diversity obtained using different samplers and culturing methods. Aerosol Sci. Technol. 45 (9):1143–1153. doi:10.1080/02786826.2011.582195.
  • Yamamoto, N., M. Hikono, H. Koyama, K. Kumagai, M. Fujii, and Y. Yanagisawa. 2006. A passive sampler for airborne coarse particles. J. Aerosol Sci. 37 (11):1442–1454. doi:10.1016/j.jaerosci.2006.05.002.
  • Yamamoto, N., M. Kimura, H. Matsuki, and Y. Yanagisawa. 2010. Optimization of a real-time pcr assay to quantitate airborne fungi collected on a gelatin filter. J. Biosci. Bioeng. 109 (1):83–88. doi:10.1016/j.jbiosc.2009.06.015.
  • Yamamoto, N., H. Matsuki, and Y. Yanagisawa. 2007. Application of the personal aeroallergen sampler to assess personal exposures to Japanese cedar and cypress pollens. J. Expo. Sci. Environ. Epidemiol. 17 (7):637. doi:10.1038/sj.jes.7500549.
  • Yamamoto, N., D. Schmechel, B. T. Chen, W. G. Lindsley, and J. Peccia. 2011. Comparison of quantitative airborne fungi measurements by active and passive sampling methods. J. Aerosol Sci. 42 (8):499–507. doi:10.1016/j.jaerosci.2011.05.004.
  • Yao, M. S., and G. Mainelis. 2007b. Use of portable microbial samplers for estimating inhalation exposure to viable biological agents. J. Expo. Sci. Environ. Epidemiol. 17 (1):31–38. doi:10.1038/sj.jes.7500517.
  • Yao, M., and G. Mainelis. 2006. Investigation of cut-off sizes and collection efficiencies of portable microbial samplers. Aerosol Sci. Technol. 40 (8):595–606. doi:10.1080/02786820600729146.
  • Yao, M., and G. Mainelis. 2007a. Analysis of portable impactor performance for enumeration of viable bioaerosols. J. Occup. Environ. Hyg. 4 (7):514–524. doi:10.1080/15459620701407388.
  • Zhen, H., T. Han, D. Fennell, and G. Mainelis. 2013. Release of free DNA molecules by the membrane-impaired bacteria during aerosolization and sampling. Appl. Environ. Microbiol. 77:7780–7789. doi:10.1128/AEM.02859-13.
  • Zhen, H., V. Krumins, D. E. Fennell, and G. Mainelis. 2018. Analysis of airborne microbial communities using 16s ribosomal RNA: Potential bias due to air sampling stress. Sci. Total Environ. 621:939–947. doi:10.1016/j.scitotenv.2017.10.154.
  • Zhen, S. Q., K. J. Li, L. H. Yin, M. S. Yao, H. L. Zhang, L. S. Chen, M. H. Zhou, and X. D. Chen. 2009. A comparison of the efficiencies of a portable biostage impactor and a Reuter centrifugal sampler (RCS) high flow for measuring airborne bacteria and fungi concentrations. J. Aerosol Sci. 40 (6):503–513. doi:10.1016/j.jaerosci.2009.02.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.