13,185
Views
77
CrossRef citations to date
0
Altmetric
Review Articles

Bioaerosol field measurements: Challenges and perspectives in outdoor studies

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 520-546 | Received 03 Jul 2019, Accepted 22 Sep 2019, Published online: 11 Nov 2019

References

  • Aller, J. Y., M. R. Kuznetsova, C. J. Jahns, and P. F. Kemp. 2005. The sea surface microlayer as a source of viral and bacterial enrichment in marine aerosols. J. Aerosol Sci. 36 (5–6):801–812. doi: 10.1016/j.jaerosci.2004.10.012.
  • Aller, J. Y., J. A. C. Radway, W. P. Kilthau, D. W. Bothe, T. W. Wilson, R. D. Vaillancourt, P. K. Quinn, D. J. Coffman, B. J. Murray, and D. A. Knopf. 2017. Size-resolved characterization of the polysaccharidic and proteinaceous components of sea spray aerosol. Atmos. Environ. 154:331–347. doi: 10.1016/j.atmosenv.2017.01.053.
  • Amann, R. I., W. Ludwig, and K. H. Schleifer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59 (1):143–169.
  • Amato, P., L. Besaury, M. Joly, B. Penaud, L. Deguillaume, and A. M. Delort. 2019. Metatranscriptomic exploration of microbial functioning in clouds. Sci. Rep. 9 (1):1–12.
  • Amato, P., F. Demeer, A. Melaouhi, S. Fontanella, A.-S. Martin-Biesse, M. Sancelme, P. Laj, and A. M. Delort. 2007a. A fate for organic acids, formaldehyde and methanol in cloud water: Their biotransformation by micro-organisms. Atmos. Chem. Phys. 7 (15):4159–4169. doi: 10.5194/acp-7-4159-2007.
  • Amato, P., M. Joly, L. Besaury, A. Oudart, N. Taib, A. I. Moné, L. Deguillaume, A.-M. Delort, and D. Debroas. 2017. Active microorganisms thrive among extremely diverse communities in cloud water. PLoS One 12 (8):e0182869. doi: 10.1371/journal.pone.0182869.
  • Amato, P., M. Joly, C. Schaupp, E. Attard, O. Möhler, C. E. Morris, Y. Brunet, and A.-M. Delort. 2015. Survival and ice nucleation activity of bacteria as aerosols in a cloud simulation chamber. Atmos. Chem. Phys. 15 (11):6455–6465. doi: 10.5194/acp-15-6455-2015.
  • Amato, P., M. Parazols, M. Sancelme, P. Laj, G. Mailhot, and A. M. Delort. 2007b. Microorganisms isolated from the water phase of tropospheric clouds at the Puy de Dôme: Major groups and growth abilities at low temperatures. FEMS Microbiol. Ecol. 59 (2):242–254. doi: 10.1111/j.1574-6941.2006.00199.x.
  • Amato, P., M. Parazols, M. Sancelme, G. Mailhot, P. Laj, and A.-M. Delort. 2007c. An important oceanic source of micro-organisms for cloud water at the Puy de Dôme (France). Atmos. Environ. 41 (37):8253–8263. doi: 10.1016/j.atmosenv.2007.06.022.
  • An, S., C. Couteau, F. Luo, J. Neveu, and M. S. DuBow. 2013. Bacterial diversity of surface sand samples from the Gobi and Taklamaken Deserts. Microb. Ecol. 66.
  • Anderson, G. P., K. D. King, D. S. Cuttino, J. P. Whelan, F. S. Ligler, J. F. MacKrell, C. S. Bovais, D. K. Indyke, and R. J. Foch. 1999. Biological agent detection with the use of an airborne biosensor. Field Anal. Chem. Technol. 3 (4–5):307–314. doi: 10.1002/(SICI)1520-6521(1999)3:4/5<307::AID-FACT9>3.0.CO;2-M.
  • Andreae, M. O. 2007. Atmosphere. Aerosols before pollution. Science 315 (5808):50–51. doi: 10.1126/science.1136529.
  • Andreae, M. O., and P. J. Crutzen. 1997. Atmospheric aerosols: Biogeochemical sources and role in atmospheric chemistry. Science 276 (5315):1052–1058. doi: 10.1126/science.276.5315.1052.
  • Archer, S. D. J., K. C. Lee, T. Caruso, T. Maki, C. K. Lee, S. C. Cary, D. A. Cowan, F. T. Maestre, and S. B. Pointing. 2019. Airborne microbial transport limitation to isolated Antarctic soil habitats. Nat. Microbiol. 4 (6):925–932. doi: 10.1038/s41564-019-0370-4.
  • Ariya, P. A., O. Nepotchatykh, O. Ignatova, and M. Amyot. 2002. Microbiological degradation of atmospheric organic compounds. Geophys. Res. Lett. 29 (22):34-1–34-4. doi: 10.1029/2002GL015637.
  • Attard, E., H. Yang, A.-M. Delort, P. Amato, U. Pöschl, C. Glaux, T. Koop, and C. E. Morris. 2012. Effects of atmospheric conditions on ice nucleation activity of pseudomonas. Atmos. Chem. Phys. 12 (22):10667–10677. doi: 10.5194/acp-12-10667-2012.
  • Augustin, S., H. Wex, D. Niedermeier, B. Pummer, H. Grothe, S. Hartmann, L. Tomsche, T. Clauss, J. Voigtländer, K. Ignatius, et al. 2013. Immersion freezing of birch pollen washing water. Atmos. Chem. Phys. 13 (21):10989–11003. doi: 10.5194/acp-13-10989-2013.
  • Aylor, D. E., D. G. Schmale, III, E. J. Shields, M. Newcomb, and C. J. Nappo. 2011. Tracking the potato late blight pathogen in the atmosphere using unmanned aerial vehicles and Lagrangian modeling. Agric. For. Meteorol. 151 (2):251–260. doi: 10.1016/j.agrformet.2010.10.013.
  • Baldocchi, D. D., B. B. Hincks, and T. P. Meyers. 1988. Measuring biosphere-atmosphere exchanges of biologically related gases with micrometeorological methods. Ecology 69 (5):1331–1340. doi: 10.2307/1941631.
  • Banchi, E., C. G. Ametrano, D. Stanković, P. Verardo, O. Moretti, F. Gabrielli, S. Lazzarin, M. F. Borney, F. Tassan, M. Tretiach, et al. 2018. DNA metabarcoding uncovers fungal diversity of mixed airborne samples in Italy. PLoS One 13 (3):e0194489–20. doi: 10.1371/journal.pone.0194489.
  • Barbaro, E., T. Kirchgeorg, R. Zangrando, M. Vecchiato, R. Piazza, C. Barbante, and A. Gambaro. 2015. Sugars in Antarctic aerosol. Atmos. Environ. 118:135–144. doi: 10.1016/j.atmosenv.2015.07.047.
  • Barberán, A., J. Ladau, J. W. Leff, K. S. Pollard, H. L. Menninger, R. R. Dunn, and N. Fierer. 2015. Continental-scale distributions of dust-associated bacteria and fungi. Proc. Natl. Acad. Sci. 112 (18):5756–5761. doi: 10.1073/pnas.1420815112.
  • Bauer, H., E. Schueller, G. Weinke, A. Berger, R. Hitzenberger, I. L. Marr, and H. Puxbaum. 2008. Significant contributions of fungal spores to the organic carbon and to the aerosol mass balance of the urban atmospheric aerosol. Atmos. Environ. 42 (22):5542–5549. doi: 10.1016/j.atmosenv.2008.03.019.
  • Behrenfeld, M. J., R. H. Moore, C. A. Hostetler, J. Graff, P. Gaube, L. M. Russell, G. Chen, S. C. Doney, S. Giovannoni, H. Liu, et al. 2019. The North Atlantic Aerosol and Marine Ecosystem Study (NAAMES): Science motive and mission overview. Front. Mar. Sci. 6:1–25. doi: 10.3389/fmars.2019.00122.
  • Bigg, E. K. 1973. Ice nucleus concentrations in remote areas. J. Atmos. Sci. 30 (6):1153–1157. doi: 10.1175/1520-0469(1973)030<1153:INCIRA>2.0.CO;2.
  • Bigg, E. K. 1996. Ice forming nuclei in the high Arctic. Tellus Ser. B Chem. Phys. Meteorol. 48 (2):223–233. doi: 10.1034/j.1600-0889.1996.t01-1-00007.x.
  • Bigg, E. K., and C. Leck. 2001. Cloud-active particles over the central Arctic Ocean were typically in the range -3 but of IFN ranged from the Pack ice at the beginning of the expedition at the end. The differences with transport time from the ice edge were less marked. J. Geophys. Res. 106 (D23):32155–32166.
  • Bigg, E. K., S. Soubeyrand, and C. E. Morris. 2015. Persistent after-effects of heavy rain on concentrations of ice nuclei and rainfall suggest a biological cause. Atmos. Chem. Phys. 15 (5):2313. doi: 10.5194/acp-15-2313-2015.
  • Boucher, O., D. Randall, P. Artaxo, C. Bretherton, G. Feingold, P. Forster, V.-M. Kerminen, Y. Kondo, H. Liao, U. Lohmann, et al. 2013. Clouds and aerosols, In Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment, report of the intergovernmental panel on climate change, ed. T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P. M. Midgley, 571–657. Cambridge, UK and New York, NY: Cambridge University Press.
  • Bowers, R. M., N. Clements, J. B. Emerson, C. Wiedinmyer, M. P. Hannigan, and N. Fierer. 2013. Seasonal variability in bacterial and fungal diversity of the near-surface atmosphere. Environ. Sci. Technol. 47 (21):12097–12106. doi: 10.1021/es402970s.
  • Bowers, R. M., C. L. Lauber, C. Wiedinmyer, M. Hamady, A. G. Hallar, R. Fall, R. Knight, and N. Fierer. 2009. Characterization of airborne microbial communities at a high-elevation site and their potential to act as atmospheric ice nuclei. Appl. Environ. Microbiol. 75 (15):5121–5130. doi: 10.1128/AEM.00447-09.
  • Bowers, R. M., I. B. McCubbin, A. G. Hallar, and N. Fierer. 2012. Seasonal variability in airborne bacterial communities at a high-elevation site. Atmos. Environ. 50:41–49. doi: 10.1016/j.atmosenv.2012.01.005.
  • Bowers, R. M., S. McLetchie, R. Knight, and N. Fierer. 2011. Spatial variability in airborne bacterial communities across land-use types and their relationship to the bacterial communities of potential source environments. ISME J. 5 (4):601–612. doi: 10.1038/ismej.2010.167.
  • British Standards Institution. 2019. Ambient air - sampling and analysis of airborne pollen grains and fungal spores for networks related to allergy - volumetric Hirst method, 1–42. BS 16868.
  • Bryan, N. C., M. Stewart, D. Granger, T. G. Guzik, and B. C. Christner. 2014. A method for sampling microbial aerosols using high altitude balloons. J. Microbiol. Methods 107:161–168. doi: 10.1016/j.mimet.2014.10.007.
  • Burrows, S. M., T. Butler, P. Jöckel, H. Tost, A. Kerkweg, U. Pöschl, and M. G. Lawrence. 2009. Bacteria in the global atmosphere - part 2: Modeling of emissions and transport between different ecosystems. Atmos. Chem. Phys. 9 (23):9281–9297. doi: 10.5194/acp-9-9281-2009.
  • Burrows, S. M., W. Elbert, M. G. Lawrence, and U. Pöschl. 2009. Bacteria in the global atmosphere – Part 1: Review and synthesis of literature data for different ecosystems. Atmos. Chem. Phys. 9 (23):9263–9280. doi: 10.5194/acp-9-9263-2009.
  • Burrows, S. M., C. Hoose, U. Pöschl, and M. G. Lawrence. 2013. Ice nuclei in marine air: Biogenic particles or dust? Atmos. Chem. Phys. 13(1):245. doi: 10.5194/acp-13-245-2013.
  • Buters, J. T. M., C. Antunes, A. Galveias, K. C. Bergmann, M. Thibaudon, C. Galán, C. Schmidt-Weber, and J. Oteros. 2018. Pollen and spore monitoring in the World. Clin. Transl. Allergy 8 (1):9.
  • Buters, J., M. Prank, M. Sofiev, G. Pusch, R. Albertini, I. Annesi-Maesano, C. Antunes, H. Behrendt, U. Berger, R. Brandao, et al. 2015. Variation of the group 5 grass pollen allergen content of airborne pollen in relation to geographic location and time in season the HIALINE working group. J. Allergy Clin. Immunol. 136 (1):87–95. doi: 10.1016/j.jaci.2015.01.049.
  • Buters, J. T. M., M. Thibaudon, M. Smith, R. Kennedy, A. Rantio-Lehtimäki, R. Albertini, G. Reese, B. Weber, C. Galan, R. Brandao, et al. 2012. Release of Bet v 1 from birch pollen from 5 European countries. Results from the HIALINE study. Atmos. Environ. 55:496–505. doi: 10.1016/j.atmosenv.2012.01.054.
  • Cáliz, J., X. Triadó-Margarit, L. Camarero, and E. O. Casamayor. 2018. A long-term survey unveils strong seasonal patterns in the airborne microbiome coupled to general and regional atmospheric circulations. Proc. Natl. Acad. Sci. 115 (48):12229–12234. doi: 10.1073/pnas.1812826115.
  • Carnelley, T., J. S. Haldane, and A. M. Anderson. 1887. IV. The carbonic acid, organic matter, and micro-organisms air, more especially of dwellings and schools. Philos. Trans. R. Soc. London 178:61–111.
  • Carotenuto, F., T. Georgiadis, B. Gioli, C. Leyronas, C. E. Morris, M. Nardino, G. Wohlfahrt, and F. Miglietta. 2017. Measurements and modeling of surface – atmosphere exchange of microorganisms in Mediterranean grassland. Atmos. Chem. Phys. 17 (24):14919–14936. doi: 10.5194/acp-17-14919-2017.
  • Chance, R. J., J. F. Hamilton, L. J. Carpenter, S. C. Hackenberg, S. J. Andrews, and T. W. Wilson. 2018. Water-soluble organic composition of the Arctic sea surface microlayer and association with ice nucleation ability. Environ. Sci. Technol. 52 (4):1817. doi: 10.1021/acs.est.7b04072.
  • Chen, B., F. Kobayashi, M. Yamada, Y.-H. Kim, Y. Iwasaka, and G.-Y. Shi. 2011. Identification of culturable bioaerosols collected over dryland in northwest China: Observation using a tethered balloon. Asian J. Atmos. Environ. 5 (3):172–180. doi: 10.5572/ajae.2011.5.3.172.
  • Christner, B. C., C. E. Morris, C. M. Foreman, R. Cai, and D. C. Sands. 2008. Ubiquity of biological ice nucleators in snowfall. Science 319 (5867):1214. doi: 10.1126/science.1149757.
  • Coluzza, I., J. Creamean, M. J. Rossi, H. Wex, P. A. Alpert, V. Bianco, Y. Boose, C. Dellago, L. Felgitsch, J. Fröhlich-Nowoisky, et al. 2017. Perspectives on the future of ice nucleation research: Research needs and unanswered questions identified from two international workshops. Atmosphere (Basel) 8 (8):138. doi: 10.3390/atmos8080138.
  • Conen, F., E. Stopelli, and L. Zimmermann. 2016. Clues that decaying leaves enrich Arctic Air with ice nucleating particles. Atmos. Environ. 129:91–94. doi: 10.1016/j.atmosenv.2016.01.027.
  • Conen, F., M. V. Yakutin, K. E. Yttri, and C. Hüglin. 2017. Ice nucleating particle concentrations increase when leaves fall in autumn. Atmosphere (Basel) 8 (10):202. doi: 10.3390/atmos8100202.
  • Cox, J. D., H. Mbareche, W. G. Lindsley, and C. Duchaine. 2019. Bioaerosol indoor field sampling. Aerosol Sci. Technol. In review.
  • Crawford, I., M. W. Gallagher, K. N. Bower, T. W. Choularton, M. J. Flynn, S. Ruske, C. Listowski, N. Brough, T. Lachlan-Cope, Z. L. Fleming, et al. 2017. Real-time detection of airborne fluorescent bioparticles in Antarctica. Atmos. Chem. Phys. 17 (23):14291–14307.
  • Crawford, I., N. H. Robinson, M. J. Flynn, V. E. Foot, M. W. Gallagher, J. A. Huffman, W. R. Stanley, and P. H. Kaye. 2014. Characterisation of bioaerosol emissions from a Colorado pine forest: Results from the BEACHON-RoMBAS experiment. Atmos. Chem. Phys. 14 (16):8559–8578. doi: 10.5194/acp-14-8559-2014.
  • Crazzolara, C., M. Ebner, A. Platis, T. Miranda, J. Bange, and A. Junginger. 2019. A new multicopter-based unmanned aerial system for pollen and spores collection in the atmospheric boundary layer. Atmos. Meas. Tech. 12 (3):1581–1598. doi: 10.5194/amt-12-1581-2019.
  • Creamean, J. M., R. M. Kirpes, K. A. Pratt, N. J. Spada, M. Maahn, G. de Boer, R. C. Schnell, and S. China. 2018a. Marine and terrestrial influences on ice nucleating particles during continuous springtime measurements in an Arctic oilfield location. Atmos. Chem. Phys. 18:18023–18042.
  • Creamean, J. M., K. Primm, M. A. Tolbert, E. G. Hall, J. Wendell, A. Jordan, P. J. Sheridan, J. Smith, and R. C. Schnell. 2018b. HOVERCAT: A novel aerial system for evaluation of aerosol-cloud interactions. Atmos. Meas. Tech. 11 (7):3969–3985. doi: 10.5194/amt-11-3969-2018.
  • Crouzy, B., M. Stella, T. Konzelmann, B. Calpini, and B. Clot. 2016. All-optical automatic pollen identification: Towards an operational system. Atmos. Environ. 140:202–212. doi: 10.1016/j.atmosenv.2016.05.062.
  • Cuthbertson, L., H. Amores-Arrocha, L. Malard, N. Els, B. Sattler, and D. Pearce. 2017. Characterisation of Arctic bacterial communities in the air above Svalbard. Biology (Basel) 6 (2):29. doi: 10.3390/biology6020029.
  • D’Amato, G., C. Vitale, M. Lanza, A. Molino, and M. D’Amato. 2016. Climate change, air pollution, and allergic respiratory diseases: An update. Curr. Opin. Allergy Clin. Immunol. 16 (5):434–440. doi: 10.1097/ACI.0000000000000301.
  • Damialis, A., D. Vokou, D. Gioulekas, and J. M. Halley. 2015. Long-term trends in airborne fungal-spore concentrations: A comparison with pollen. Fungal Ecol. 13:150–156. doi: 10.1016/j.funeco.2014.09.010.
  • De Bary, A. 1887. Comparative morphology and biology of the fungi, mycetozoa and bacteria. Oxford: Clarendon Press.
  • de Weger, L. A., C. H. Pashley, B. Šikoparija, C. A. Skjøth, I. Kasprzyk, Ł. Grewling, M. Thibaudon, D. Magyar, and M. Smith. 2016. The long distance transport of airborne ambrosia pollen to the UK and The Netherlands from Central and South Europe. Int. J. Biometeorol. 60 (12):1829–1839. doi: 10.1007/s00484-016-1170-7.
  • DeLeon-Rodriguez, N., T. L. Lathem, L. M. Rodriguez-R, J. M. Barazesh, B. E. Anderson, A. J. Beyersdorf, L. D. Ziemba, M. Bergin, A. Nenes, and K. T. Konstantinidis. 2013. Microbiome of the upper troposphere: Species composition and prevalence, effects of tropical storms, and atmospheric implications. Proc. Natl. Acad. Sci. 110 (7):2575–2580. doi: 10.1073/pnas.1212089110.
  • Delort, A.-M., and P. Amato. 2017. Microbiology of aerosols. New York, NY: John Wiley & Sons.
  • DeMott, P. J., T. C. J. Hill, C. S. McCluskey, K. A. Prather, D. B. Collins, R. C. Sullivan, M. J. Ruppel, R. H. Mason, V. E. Irish, T. Lee, et al. 2016. Sea spray aerosol as a unique source of ice nucleating particles. Proc. Natl. Acad. Sci. 113 (21):5797–5803.
  • DeMott, P. J., and A. J. Prenni. 2010. New directions: Need for defining the numbers and sources of biological aerosols acting as ice nuclei. Atmos. Environ. 44 (15):1944–1945. doi: 10.1016/j.atmosenv.2010.02.032.
  • Després, V. R., Huffman, A. J. Burrows, S. M. Hoose, C. Safatov, A. S. Buryak, G. Fröhlich-Nowoisky, J. Elbert, W. Andreae, M. O. Pöschl U., et al. 2012. Primary biological aerosol particles in the atmosphere: A review. Tellus Ser. B Chem. Phys. Meteorol. 64 (1):15598. doi: 10.3402/tellusb.v64i0.15598.
  • Di Filippo, P., D. Pomata, C. Riccardi, F. Buiarelli, and C. Perrino. 2013. Fungal contribution to size-segregated aerosol measured through biomarkers. Atmos. Environ. 64:132–140. doi: 10.1016/j.atmosenv.2012.10.010.
  • Dommergue, A., P. Amato, R. Tignat-Perrier, O. Magand, A. Thollot, M. Joly, L. Bouvier, K. Sellegri, T. Vogel, J. E. Sonke, et al. 2019. Methods to investigate the global atmospheric microbiome. Front. Microbiol. 10:243. doi: 10.3389/fmicb.2019.00243.
  • Donegan, K., C. Matyac, R. Seidler, and A. Porteous. 1991. Evaluation of methods for sampling, recovery, and enumeration of bacteria applied to the phylloplane. Appl. Environ. Microbiol. 57 (1):51–56.
  • Dreischmeier, K., C. Budke, L. Wiehemeier, T. Kottke, and T. Koop. 2017. Boreal pollen contain ice-nucleating as well as ice-binding ‘antifreeze’ polysaccharides. Sci. Rep. 7:41890.
  • Ehrenberg, C. G. 1847. Passat-Staub und Blut-Regen: ein großes organisches unsichtbares Wirken und Leben in der Atmosphäre. Königliche ed. Berlin, 1–192.
  • Elbert, W., P. E. Taylor, M. O. Andreae, and U. Pöschl. 2007. Contribution of fungi to primary biogenic aerosols in the atmosphere: Wet and dry discharged spores, carbohydrates, and inorganic ions. Atmos. Chem. Phys. 7 (17):4569–4588. doi: 10.5194/acp-7-4569-2007.
  • Environmental Agency. 2018. Technical Guidance Note (Monitoring) M9: Environmental monitoring of bioaerosols at regulated facilities.
  • Essoussi, I., F. Ghodhbane-Gtari, H. Amairi, H. Sghaier, A. Jaouani, L. Brusetti, D. Daffonchio, A. Boudabous, and M. Gtari. 2010. Esterase as an enzymatic signature of geodermatophilaceae adaptability to Sahara desert stones and monuments. J. Appl. Microbiol. 108 (5):1723–1732. doi: 10.1111/j.1365-2672.2009.04580.x.
  • Estillore, A. D., J. V. Trueblood, and V. H. Grassian. 2016. Atmospheric chemistry of bioaerosols: Heterogeneous and multiphase reactions with atmospheric oxidants and other trace gases. Chem. Sci. 7 (11):6604–6616. doi: 10.1039/C6SC02353C.
  • Evans, C. A., P. J. Coombes, and R. H. Dunstan. 2006. Wind, rain and bacteria: The effect of weather on the microbial composition of roof-harvested rainwater. Water Res. 40 (1):37–44. doi: 10.1016/j.watres.2005.10.034.
  • Failor, K. C., D. G. Schmale, B. A. Vinatzer, and C. L. Monteil. 2017. Ice nucleation active bacteria in precipitation are genetically diverse and nucleate ice by employing different mechanisms. ISME J. 11 (12):2740–2753. doi: 10.1038/ismej.2017.124.
  • Fall, A. L., and R. Fall. 1998. High-Level expression of ice nuclei in Erwinia herbicola is induced by phosphate starvation and low temperature. Curr. Microbiol. 36 (6):370–376. doi: 10.1007/s002849900325.
  • Fang, Z., Z. Ouyang, H. Zheng, X. Wang, and L. Hu. 2007. Culturable airborne bacteria in outdoor environments in Beijing. Microbiol. Ecol. 54 (3):487–496.
  • Fierer, N., Z. Liu, M. Rodríguez-Hernández, R. Knight, M. Henn, and M. T. Hernandez. 2008. Short-term temporal variability in airborne bacterial and fungal populations. Appl. Environ. Microbiol. 74 (1):200–207. doi: 10.1128/AEM.01467-07.
  • Franze, T., M. G. Weller, R. Niessner, and U. Pöschl. 2005. Protein nitration by polluted air. Environ. Sci. Technol. 39 (6):1673–1678. doi: 10.1021/es0488737.
  • Fröhlich-Nowoisky, J., S. M. Burrows, Z. Xie, G. Engling, P. A. Solomon, M. P. Fraser, O. L. Mayol-Bracero, P. Artaxo, D. Begerow, R. Conrad, et al. 2012. Biogeography in the air: Fungal diversity over land and oceans. Biogeosciences 9 (3):1125–1136. doi: 10.5194/bg-9-1125-2012.
  • Fröhlich-Nowoisky, J., T. C. J. Hill, B. G. Pummer, P. Yordanova, G. D. Franc, and U. Pöschl. 2015. Ice nucleation activity in the widespread soil fungus Mortierella alpina. Biogeosciences 12 (4):1057–1071. doi: 10.5194/bg-12-1057-2015.
  • Fröhlich-Nowoisky, J., C. J. Kampf, B. Weber, J. A. Huffman, C. Pöhlker, M. O. Andreae, N. Lang-Yona, S. M. Burrows, S. S. Gunthe, W. Elbert, et al. 2016. Bioaerosols in the earth system: Climate, health, and ecosystem interactions. Atmos. Res. 182:346–376. doi: 10.1016/j.atmosres.2016.07.018.
  • Galan, C., C. Antunes, R. Brandao, C. Torres, H. Garcia-Mozo, E. Caeiro, R. Ferro, M. Prank, M. Sofiev, R. Albertini, et al. 2013. Airborne olive pollen counts are not representative of exposure to the major olive allergen Ole e 1. Allergy Eur. J. Allergy Clin. Immunol. 68 (6):809–812. doi: 10.1111/all.12144.
  • Galán, C., M. Smith, M. Thibaudon, G. Frenguelli, J. Oteros, R. Gehrig, U. Berger, B. Clot, and R. Brandao. 2014. Pollen monitoring: Minimum requirements and reproducibility of analysis. Aerobiologia (Bologna) 30 (4):385–395. doi: 10.1007/s10453-014-9335-5.
  • Gantt, B., and N. Meskhidze. 2013. The physical and chemical characteristics of marine primary organic aerosol: A review. Atmos. Chem. Phys. 13 (8):3979–3996. doi: 10.5194/acp-13-3979-2013.
  • Gehrig, R., F. Maurer, and C. Schwierz. 2018. Designing new automatically generated pollen calendars for the public in Switzerland. Aerobiologia (Bologna) 34 (3):349–362. doi: 10.1007/s10453-018-9518-6.
  • Georgakopoulos, D. G., V. Després, J. Fröhlich-Nowoisky, R. Psenner, P. A. Ariya, M. Pósfai, H. E. Ahern, B. F. Moffett, and T. C. J. Hill. 2009. Microbiology and atmospheric processes: Biological, physical and chemical characterization of aerosol particles. Biogeosciences 6 (4):721–737. doi: 10.5194/bg-6-721-2009.
  • Ghosal, S., T. J. Leighton, K. E. Wheeler, I. D. Hutcheon, and P. K. Weber. 2010. Spatially resolved characterization of water and ion incorporation in Bacillus Spores. Appl. Environ. Microbiol. 76 (10):3275–3282. doi: 10.1128/AEM.02485-09.
  • Gonzalez, F., M. P. G. Castro, P. Narayan, R. Walker, and L. Zeller. 2011. Development of an autonomous unmanned aerial system to collect time-stamped samples from the atmosphere and localize potential pathogen sources. J. Field Rob. 28 (6):961–976. doi: 10.1002/rob.20417.
  • Graham, B., Guyon, P. Maenhaut, W. Taylor, P. E. Ebert, M. Matthias-Maser, S. Mayol-Bracero, O. L. Godoi, R. H. M. Artaxo, P. Meixner, et al. 2003. Composition and diurnal variability of the natural Amazonian aerosol. J. Geophys. Res. Atmos. 108 (D24):n/a. doi: 10.1029/2003JD004049.
  • Grewling, Ł., P. Bogawski, D. Jenerowicz, M. Czarnecka-Operacz, B. Šikoparija, C. A. Skjøth, and M. Smith. 2016. Mesoscale atmospheric transport of ragweed pollen allergens from infected to uninfected areas. Int. J. Biometeorol. 60 (10):1493–1500. doi: 10.1007/s00484-016-1139-6.
  • Griffin, D. W. 2007. Atmospheric movement of microorganisms in clouds of desert dust and implications for human health. Clin. Microbiol. Rev. 20 (3):459–477. doi: 10.1128/CMR.00039-06.
  • Griffiths, P. T., J. S. Borlace, P. J. Gallimore, M. Kalberer, M. Herzog, and F. D. Pope. 2012. Hygroscopic growth and cloud activation of pollen: A laboratory and modelling study. Atmos. Sci. Lett. 13 (4):289–295.
  • Grinn-Gofroń, A., J. Nowosad, B. Bosiacka, I. Camacho, C. Pashley, J. Belmonte, C. De Linares, N. Ianovici, J. M. M. Manzano, M. Sadyś, et al. 2019. Airborne Alternaria and Cladosporium fungal spores in Europe: Forecasting possibilities and relationships with meteorological parameters. Sci. Total Environ. 653:938–946. doi: 10.1016/j.scitotenv.2018.10.419.
  • Hader, J. D., T. P. Wright, and M. D. Petters. 2014. Contribution of pollen to atmospheric ice nuclei concentrations. Atmos. Chem. Phys. 14 (11):5433. doi: 10.5194/acp-14-5433-2014.
  • Hanson, C. A., J. A. Fuhrman, M. C. Horner-Devine, and J. B. H. Martiny. 2012. Beyond biogeographic patterns: Processes shaping the microbial landscape. Nat. Rev. Microbiol. 10 (7):497.
  • Hara, K., and D. Zhang. 2012. Bacterial abundance and viability in long-range transported dust. Atmos. Environ. 47:20–25. doi: 10.1016/j.atmosenv.2011.11.050.
  • Harding, T., A. D. Jungblut, C. Lovejoy, and W. F. Vincent. 2011. Microbes in high arctic snow and implications for the cold biosphere. Appl. Environ. Microbiol. 77 (10):3234–3243. doi: 10.1128/AEM.02611-10.
  • Harris, M. J., N. C. Wickramasinghe, D. Lloyd, J. V. Narlikar, P. Rajaratnam, M. P. Turner, S. Al-Mufti, M. K. Wallis, S. Ramadurai, and F. Hoyle. 2002. Detection of living cells in stratospheric samples. Proc. SPIE. 4495:192–198.
  • Hartmann, M., T. Blunier, S. O. Brügger, J. Schmale, M. Schwikowski, A. Vogel, H. Wex, and F. Stratmann. 2019. Variation of ice nucleating particles in the European Arctic over the last centuries. Geophys. Res. Lett. 46 (7):4007–4010. doi: 10.1029/2019GL082311.
  • Haugen, D. A. 1978. Effects of sampling rates and averaging periods of meteorological measurements (turbulence and wind speed data). Paper presented at Symposium on Meteorological Observations and Instrumentation, 4th, Denver, Colorado, pp. 15–18.
  • Healy, D. A., J. A. Huffman, D. J. O’Connor, C. Pöhlker, U. Pöschl, and J. R. Sodeau. 2014. Ambient measurements of biological aerosol particles near Killarney, Ireland: A comparison between real-time fluorescence and microscopy techniques. Atmos. Chem. Phys. 14 (15):8055–8069. doi: 10.5194/acp-14-8055-2014.
  • Herlihy, L. J., J. N. Galloway, and A. L. Mills. 1987. Bacterial utilization of formic and acetic acid in rainwater. Atmos. Environ. 21(11):2397–2402.
  • Hiranuma, N., O. Möhler, K. Yamashita, T. Tajiri, A. Saito, A. Kiselev, N. Hoffmann, C. Hoose, E. Jantsch, T. Koop, et al. 2015. Ice nucleation by cellulose and its potential contribution to ice formation in clouds. Nature Geosci. 8 (4):273–277. doi: 10.1038/ngeo2374.
  • Holt, K. A., and K. D. Bennett. 2014. Principles and methods for automated palynology. New Phytol. 203 (3):735. doi: 10.1111/nph.12848.
  • Hoose, C., J. E. Kristjánsson, and S. M. Burrows. 2010. How important is biological ice nucleation in clouds on a global scale? Environ. Res. Lett. 5 (2):024009. doi: 10.1088/1748-9326/5/2/024009.
  • Hoose, C., and O. Möhler. 2012. Heterogeneous ice nucleation on atmospheric aerosols: A review of results from laboratory experiments. Atmos. Chem. Phys. 12 (20):9817. doi: 10.5194/acp-12-9817-2012.
  • Hu, W., H. Niu, K. Murata, Z. Wu, M. Hu, T. Kojima, and D. Zhang. 2018. Bacteria in atmospheric waters: Detection, characteristics and implications. Atmos. Environ. 179:201–221. doi: 10.1016/j.atmosenv.2018.02.026.
  • Huffman, J. A., A. E. Perring, N. J. Savage, B. Clot, B. Crouzy, F. Tummon, O. Shoshanim, B. Damit, J. Schneider, et al. 2019. Real-time sensing of bioaerosols: Review and current perspectives. Aerosol Sci. Technol. 1. doi: 10.1080/02786826.2019.1664724.
  • Huffman, J. A., A. J. Prenni, P. J. Demott, C. Pöhlker, R. H. Mason, N. H. Robinson, J. Fröhlich-Nowoisky, Y. Tobo, V. R. Després, E. Garcia, et al. 2013. High concentrations of biological aerosol particles and ice nuclei during and after rain. Atmos. Chem. Phys. 13 (13):6151–6164. doi: 10.5194/acp-13-6151-2013.
  • Huffman, J. A., and J. Santarpia. 2017. Online techniques for quantification and characterization of biological aerosols. In Microbiology of aerosols, ed. A.-M. Delort and P. Amato. Hoboken, NJ: John Wiley & Sons, Inc.
  • Huffman, J. A., B. Sinha, R. M. Garland, A. Snee-Pollmann, S. S. Gunthe, P. Artaxo, S. T. Martin, M. O. Andreae, and U. Pöschl. 2012. Size distributions and temporal variations of biological aerosol particles in the Amazon rainforest characterized by microscopy and real-time UV-APS fluorescence techniques during AMAZE-08. Atmos. Chem. Phys. 12 (24):11997–12019. doi: 10.5194/acp-12-11997-2012.
  • Hummel, M., C. Hoose, B. Pummer, C. Schaupp, J. Fröhlich-Nowoisky, and O. Möhler. 2018. Simulating the influence of primary biological aerosol particles on clouds by heterogeneous ice nucleation. Atmos. Chem. Phys. 18 (20):15437–15450. doi: 10.5194/acp-18-15437-2018.
  • Irish, V. E., P. Elizondo, J. Chen, C. Chou, J. Charette, M. Lizotte, L. A. Ladino, T. W. Wilson, M. Gosselin, B. J. Murray, et al. 2017. Ice-nucleating particles in Canadian Arctic sea-surface microlayer and bulk seawater. Atmos. Chem. Phys. 17 (17):10583–10595. doi: 10.5194/acp-17-10583-2017.
  • Irish, V. E., S. J. Hanna, M. D. Willis, S. China, J. L. Thomas, J. J. B. Wentzell, A. Cirisan, M. Si, W. R. Leaitch, et al. 2019. Ice nucleating particles in the marine boundary layer in the Canadian Arctic during summer 2014. Atmos. Chem. Phys. 19 (2):1027–1039. doi: 10.5194/acp-19-1027-2019.
  • Isard, S. A., C. W. Barnes, S. Hambleton, A. Ariatti, J. M. Russo, A. Tenuta, D. A. Gay, and L. J. Szabo. 2011. Predicting soybean rust incursions into the North American continental interior using crop monitoring, spore trapping, and aerobiological modeling. Plant Dis. 95 (11):1346–1357. doi: 10.1094/PDIS-01-11-0034.
  • Issanova, G., and J. Abuduwaili. 2017. Natural conditions of central Asia and land-cover changes. In Aeolian proceses as dust storms in the deserts of Central Asia and Kazakhstan, ed. G. Issanova and J. Abuduwaili, 29–49. Singapore: Springer Singapore. doi: 10.1007/978-981-10-3190-8_2.
  • Iwasaka, Y., G.-Y. Shi, M. Yamada, F. Kobayashi, M. Kakikawa, T. Maki, T. Naganuma, B. Chen, Y. Tobo, and C. S. Hong. 2009. Mixture of Kosa (Asian dust) and bioaerosols detected in the atmosphere over the Kosa particles source regions with balloon-borne measurements: Possibility of long-range transport. Air Qual. Atmos. Heal. 2 (1):29–38. doi: 10.1007/s11869-009-0031-5.
  • Jeon, E. M., H. J. Kim, K. Jung, J. H. Kim, M. Y. Kim, Y. P. Kim, and J. O. Ka. 2011. Impact of Asian dust events on airborne bacterial community assessed by molecular analyses. Atmos. Environ. 45 (25):4313–4321. doi: 10.1016/j.atmosenv.2010.11.054.
  • Jimenez-Sanchez, C., R. Hanlon, K. A. Aho, C. Powers, C. E. Morris, and D. G. Schmale, III. 2018. Diversity and ice nucleation activity of microorganisms collected with a small unmanned aircraft system (sUAS) in France and the United States. Front. Microbiol. 9:1667. doi: 10.3389/fmicb.2018.01667.
  • Joly, M., P. Amato, L. Deguillaume, M. Monier, C. Hoose, and A. M. Delort. 2014. Quantification of ice nuclei active at near 0 °C temperatures in low-altitude clouds at the Puy de Dôme atmospheric station. Atmos. Chem. Phys. 14 (15):8185. doi: 10.5194/acp-14-8185-2014.
  • Joly, M., P. Amato, M. Sancelme, V. Vinatier, M. Abrantes, L. Deguillaume, and A.-M. Delort. 2015. Survival of microbial isolates from clouds toward simulated atmospheric stress factors. Atmos. Environ. 117:92–98. doi: 10.1016/j.atmosenv.2015.07.009.
  • Jones, A. M., and R. M. Harrison. 2004. The effects of meteorological factors on atmospheric bioaerosol concentrations - A review. Sci. Total Environ. 326 (1–3):151–180. doi: 10.1016/j.scitotenv.2003.11.021.
  • Joung, Y. S., Z. Ge, and C. R. Buie. 2017. Bioaerosol generation by raindrops on soil. Nat. Commun. 8:1–10.
  • Kaarakainen, P., T. Meklin, H. Rintala, A. Hyvärinen, P. Kärkkäinen, A. Vepsäläinen, M. Hirvonen, and A. Nevalainen. 2008. Seasonal variation in airborne microbial concentrations and diversity at landfill, urban and rural sites. Clean Soil Air Water 36 (7):556–563. doi: 10.1002/clen.200700179.
  • Kakikawa, M., F. Kobayashi, T. Maki, M. Yamada, T. Higashi, B. Chen, G. Shi, C. Hong, Y. Tobo, and Y. Iwasaka. 2008. Dustborne microorganisms in the atmosphere over an Asian dust source region, Dunhuang. Air Qual. Atmos. Heal. 1 (4):195–202. doi: 10.1007/s11869-008-0024-9.
  • Kanji, Z. A., L. A. Ladino, H. Wex, Y. Boose, M. Burkert-Kohn, D. J. Cziczo, and M. Krämer. 2017. Overview of ice nucleating particles. Meteorol. Monogr. 58:1–1-1.33. doi: 10.1175/AMSMONOGRAPHS-D-16-0006.1.
  • Kasprzyk, I., and M. Worek. 2006. Airborne fungal spores in urban and rural environments in Poland. Aerobiologia (Bologna) 22 (3):169. doi: 10.1007/s10453-006-9029-8.
  • Kellogg, C. A., and D. W. Griffin. 2006. Aerobiology and the global transport of desert dust. Trends Ecol. (Amst.) 21 (11):638–644. doi: 10.1016/j.tree.2006.07.004.
  • Kim, S., P. A. Jaques, M. Chang, J. R. Froines, and C. Sioutas. 2001. Versatile aerosol concentration enrichment system (VACES) for simultaneous in vivo and in vitro evaluation of toxic effects of ultrafine, fine and coarse ambient particles Part I: Development and laboratory characterization. J. Aerosol Sci. 32 (11):1281–1297. doi: 10.1016/S0021-8502(01)00057-X.
  • Kiselev, D., L. Bonacina, and J. P. Wolf. 2013. A flash-lamp based device for fluorescence detection and identification of individual pollen grains. Rev. Sci. Instrum. 84 (3):033302.
  • Knopf, D. A., P. A. Alpert, and B. Wang. 2018. The role of organic aerosol in atmospheric ice nucleation: A review. ACS Earth Sp. Chem. 2 (3):168–202.
  • Ko, G., M. W. First, and H. A. Burge. 2000. Influence of relative humidity on particle size and UV sensitivity of Serratia marcescens and Mycobacterium bovis BCG Aerosols. Tuber. Lung Dis. 80 (4–5):217–228. doi: 10.1054/tuld.2000.0249.
  • Kobayashi, F., K. Iwata, T. Maki, M. Kakikawa, T. Higashi, M. Yamada, T. Ichinose, and Y. Iwasaka. 2016. Evaluation of the toxicity of a Kosa (Asian duststorm) event from view of food poisoning: Observation of Kosa cloud behavior and real-time PCR analyses of Kosa bioaerosols during May 2011 in Kanazawa, Japan. Air Qual. Atmos. Heal. 9 (1):3–14.
  • Könemann, T., N. Savage, C. M. Beall, E. Rodriguez-Caballero, F. Ditas, M. Dorf, H. Harder, J. Lelieveld, D. Walter, B. Weber, et al. 2018. Online bioaerosol and dust measurements during the AQABA Research Cruise around the Arabian Peninsula. Paper presented at the 10th Int. Aerosol Conf., St. Louis, Missouri, USA.
  • Kourtev, P. S., K. A. Hill, P. B. Shepson, and A. Konopka. 2011. Atmospheric cloud water contains a diverse bacterial community. Atmos. Environ. 45 (30):5399–5405. doi: 10.1016/j.atmosenv.2011.06.041.
  • Kraaijeveld, K., L. A. de Weger, M. Ventayol García, H. Buermans, J. Frank, P. S. Hiemstra, and J. T. den Dunnen. 2015. Efficient and sensitive identification and quantification of airborne pollen using next-generation DNA sequencing. Mol. Ecol. Resour. 15 (1):8–16. doi: 10.1111/1755-0998.12288.
  • Krumins, V., G. Mainelis, L. J. Kerkhof, and D. E. Fennell. 2014. Substrate-dependent rRNA production in an airborne bacterium. Environ. Sci. Technol. Lett. 1 (9):376–381. doi: 10.1021/ez500245y.
  • Kuznetsova, M., C. Lee, and J. Aller. 2005. Characterization of the proteinaceous matter in marine aerosols. Mar. Chem. 96 (3–4):359–377. doi: 10.1016/j.marchem.2005.03.007.
  • Ladino, L. A., J. D. Yakobi-Hancock, W. P. Kilthau, R. H. Mason, M. Si, J. Li, L. A. Miller, C. L. Schiller, J. A. Huffman, J. Y. Aller, et al. 2016. Addressing the ice nucleating abilities of marine aerosol: A combination of deposition mode laboratory and field measurements. Atmos. Environ. 132:1–10. doi: 10.1016/j.atmosenv.2016.02.028.
  • Lateran, S., M. F. Sedan, A. S. M. Harithuddin, and S. Azrad. 2016. Development of unmanned aerial vehicle (UAV) based high altitude balloon (HAB) platform for active aerosol sampling. IOP Conf. Ser. Mater. Sci. Eng. 152 (1):12018.
  • Lauber, A., A. Kiselev, T. Pander, P. Handmann, and T. Leisner. 2018. Secondary ice formation during freezing of levitated droplets. J. Atmos. Sci. 75 (8):2815. doi: 10.1175/JAS-D-18-0052.1.
  • Leck, C., and E. K. Bigg. 2008. Comparison of sources and nature of the tropical aerosol with the summer high arctic aerosol. Tellus Ser. B Chem. Phys. Meteorol. 60 (1):118–126. doi: 10.1111/j.1600-0889.2007.00315.x.
  • Lee, B. U., S. H. Kim, and S. S. Kim. 2002. Hygroscopic growth of E. coli and B. subtilis bioaerosols. J. Aerosol Sci. 33 (12):1721–1723. doi: 10.1016/S0021-8502(02)00114-3.
  • Lever, M. A., A. Torti, P. Eickenbusch, A. B. Michaud, T. Å Antl-Temkiv, and B. B. Jã¸Rgensen. 2015. A modular method for the extraction of DNA and RNA, and the separation of DNA pools from diverse environmental sample types. Front. Microbiol. 6:476. doi: 10.3389/fmicb.2015.00476.
  • Lighthart, B. 1997. The ecology of bacteria in the alfresco atmosphere. FEMS Microbiol. Ecol. 23 (4):263–274. doi: 10.1016/S0168-6496(97)00036-6.
  • Lighthart, B., and B. T. Shaffer. 1994. Bacterial flux from chaparral into the atmosphere in mid-summer at a high desert location. Atmos. Sci. 28:1267–1274. doi: 10.1016/1352-2310(94)90273-9.
  • Lighthart, B., B. T. Shaffer, B. Marthi, and L. M. Ganio. 1993. Artificial wind-gust liberation of microbial bioaerosols previously deposited on plants. Aerobiologia (Bologna) 9 (2–3):189–196. doi: 10.1007/BF02066261.
  • Ligler, F. S., G. P. Anderson, P. T. Davidson, R. J. Foch, J. T. Ives, K. D. King, G. Page, D. A. Stenger, and J. P. Whelan. 1998. Remote sensing using an airborne biosensor. Environ. Sci. Technol. 32 (16):2461–2466. doi: 10.1021/es970991p.
  • Lim, N., C. I. Munday, G. E. Allison, T. O’Loingsigh, P. De Deckker, and N. J. Tapper. 2011. Microbiological and meteorological analysis of two Australian dust storms in April 2009. Sci. Total Environ. 412–413:223–231. doi: 10.1016/j.scitotenv.2011.10.030.
  • Lin, B., A. Bozorgmagham, S. D. Ross, and D. G. Schmale Iii. 2013. Small fluctuations in the recovery of fusaria across consecutive sampling intervals with unmanned aircraft 100 m above Ground Level. Aerobiologia (Bologna) 29 (1):45–54. doi: 10.1007/s10453-012-9261-3.
  • Lindemann, J., H. A. Constantinidou, W. R. Barchet, and C. D. Upper. 1982. Plants as sources of airborne bacteria, including ice nucleation-active bacteria. Appl. Environ. Microbiol. 44 (5):1059–1063.
  • Lindemann, J., and C. D. Upper. 1985. Aerial dispersal of epiphytic bacteria over bean plants. Appl. Environ. Microbiol. 50 (5):1229–1232.
  • Lin, H., L. Lizarraga, L. A. Bottomley, and J. Carson Meredith. 2015. Effect of water absorption on pollen adhesion. J. Colloid Interface Sci. 442:133–139. doi: 10.1016/j.jcis.2014.11.065.
  • Lin, W.-R., P.-H. Wang, C.-J. Tien, W.-Y. Chen, Y.-A. Yu, and L.-Y. Hsu. 2018. Changes in airborne fungal flora along an urban to rural gradient. J. Aerosol Sci. 116:116–123. doi: 10.1016/j.jaerosci.2017.11.010.
  • Liu, H., Z. Hu, M. Zhou, J. Hu, X. Yao, H. Zhang, Z. Li, L. Lou, C. Xi, H. Qian, et al. 2019. The distribution variance of airborne microorganisms in urban and rural environments. Environ. Pollut. 247:898–906.
  • Liu, F., P. S. J. Lakey, T. Berkemeier, H. Tong, A. T. Kunert, H. Meusel, Y. Cheng, H. Su, J. Fröhlich-Nowoisky, S. Lai, et al. 2017. Atmospheric protein chemistry influenced by anthropogenic air pollutants: Nitration and oligomerization upon exposure to ozone and nitrogen dioxide. Faraday Discuss. 200:413–427. doi: 10.1039/C7FD00005G.
  • Ma, Y., J. Zhou, S. Yang, Y. Zhao, and X. Zheng. 2017. Assessment for the impact of dust events on measles incidence in Western China. Atmos. Environ. 157:1–9. doi: 10.1016/j.atmosenv.2017.03.010.
  • Madelin, T. M. 1994. Fungal aerosols: A review. J. Aerosol Sci. 25 (8):1405–1412.
  • Mahaffee, W. F., and R. Stoll. 2016. The ebb and flow of airborne pathogens: monitoring and use in disease management decisions. Phytopathology 106 (5):420–431. doi: 10.1094/PHYTO-02-16-0060-RVW.
  • Mainelis, G. 2019. Bioaerosol sampling: Classical approaches, advances and perspectives. Aerosol Sci. Technol 1. In review. doi: 10.1080/02786826.2019.1671950.
  • Mainelis, G., K. Willeke, A. Adhikari, T. Reponen, and S. A. Grinshpun. 2002. Design and collection efficiency of a new electrostatic precipitator for bioaerosol collection. Aerosol Sci. Technol. 36 (11):1073–1085.
  • Maki, T., K. Hara, A. Iwata, K. C. Lee, K. Kawai, K. Kai, F. Kobayashi, S. B. Pointing, S. Archer, H. Hasegawa, et al. 2017a. Variations in airborne bacterial communities at high altitudes over the Noto Peninsula (Japan) in response to Asian dust events. Atmos. Chem. Phys. 17 (19):11877–11897. doi: 10.5194/acp-17-11877-2017.
  • Maki, T., K. Hara, F. Kobayashi, Y. Kurosaki, M. Kakikawa, A. Matsuki, B. Chen, G. Shi, H. Hasegawa, and Y. Iwasaka. 2015. Vertical distribution of airborne bacterial communities in an Asian-dust downwind area, Noto Peninsula. Atmos. Environ. 119:282–293. doi: 10.1016/j.atmosenv.2015.08.052.
  • Maki, T., M. Kakikawa, F. Kobayashi, M. Yamada, A. Matsuki, H. Hasegawa, and Y. Iwasaka. 2013. Assessment of composition and origin of airborne bacteria in the free troposphere over Japan. Atmos. Environ. 74:73–82. doi: 10.1016/j.atmosenv.2013.03.029.
  • Maki, T., Y. Kurosaki, K. Onishi, K. C. Lee, S. B. Pointing, D. Jugder, N. Yamanaka, H. Hasegawa, and M. Shinoda. 2017b. Variations in the structure of airborne bacterial communities in Tsogt-Ovoo of Gobi desert area during dust events. Air Qual. Atmos. Heal. 10(3):249–260. doi: 10.1007/s11869-016-0430-3.
  • Maki, T., K. C. Lee, K. Kawai, K. Onishi, C. S. Hong, Y. Kurosaki, M. Shinoda, K. Kai, Y. Iwasaka, S. D. J. Archer, et al. 2019. Aeolian dispersal of bacteria associated with desert dust and anthropogenic particles over continental and oceanic surfaces. J. Geophys. Res. Atmos. 124 (10):5579–5588. doi: 10.1029/2018JD029597.
  • Maki, T., F. Puspitasari, K. Hara, M. Yamada, F. Kobayashi, H. Hasegawa, and Y. Iwasaka. 2014. Variations in the structure of airborne bacterial communities in a downwind area during an Asian dust (Kosa) event. Sci. Total Environ. 488–489:75–84. doi: 10.1016/j.scitotenv.2014.04.044.
  • Maki, T., S. Susuki, F. Kobayashi, M. Kakikawa, M. Yamada, T. Higashi, B. Chen, G. Shi, C. Hong, Y. Tobo, et al. 2008. Phylogenetic diversity and vertical distribution of a halobacterial community in the atmosphere of an asian dust (KOSA) source region, Dunhuang City. Air Qual. Atmos. Heal. 1 (2):81–89. doi: 10.1007/s11869-008-0016-9.
  • Marks, R., K. Kruczalak, K. Jankowska, and M. Michalska. 2001. Bacteria and fungi in air over the Gulf of Gdansk and Baltic Sea. J. Aerosol Sci. 32 (2):237–250. doi: 10.1016/S0021-8502(00)00064-1.
  • Mason, R. H., M. Si, J. Li, C. Chou, R. Dickie, D. Toom-Sauntry, C. Pöhlker, J. D. Yakobi-Hancock, L. A. Ladino, K. Jones, et al. 2015. Ice nucleating particles at a coastal marine boundary layer site: Correlations with aerosol type and meteorological conditions. Atmos. Chem. Phys. 15 (21):12547–12566. doi: 10.5194/acp-15-12547-2015.
  • Mayol, E., M. A. Jiménez, G. J. Herndl, C. M. Duarte, and J. M. Arrieta. 2014. Resolving the abundance and air-sea fluxes of airborne microorganisms in the North Atlantic Ocean. Front. Microbiol. 5:1–9. doi: 10.3389/fmicb.2017.01971.
  • Mazar, Y., E. Cytryn, Y. Erel, and Y. Rudich. 2016. Effect of dust storms on the atmospheric microbiome in the eastern Mediterranean. Environ. Sci. Technol. 50 (8):4194–4202. doi: 10.1021/acs.est.5b06348.
  • McCluskey, C. S., J. Ovadnevaite, M. Rinaldi, J. Atkinson, F. Belosi, D. Ceburnis, S. Marullo, T. C. J. Hill, U. Lohmann, Z. A. Kanji, et al. 2018. Marine and terrestrial organic ice-nucleating particles in pristine marine to continentally influenced Northeast Atlantic air masses. J. Geophys. Res. Atmos. 123 (11):6196–6212. doi: 10.1029/2017JD028033.
  • Möhler, O., P. J. DeMott, G. Vali, and Z. Levin. 2007. Microbiology and atmospheric processes: The role of biological particles in cloud physics. Biogeosciences 4 (6):1059–1071. doi: 10.5194/bg-4-1059-2007.
  • Monahan, E. C., C. W. Fairall, K. L. Davidson, and P. J. Boyle. 1983. Observed inter‐relations between 10m winds, ocean whitecaps and marine aerosols. Q. J. R. Meteorol. Soc. 109 (460):379–392. doi: 10.1256/smsqj.46009.
  • Moran-Zuloaga, D., Ditas, F. Walter, D. Saturno, J. Brito, J. Carbone, S. Chi, X. Hrabě De Angelis, I. Baars, H. H M Godoi, et al. 2018. Long-term study on coarse mode aerosols in the Amazon rain forest with the frequent intrusion of Saharan dust plumes. Atmos. Chem. Phys. 18 (13):10055–10088. doi: 10.5194/acp-18-10055-2018.
  • Morris, C. E., F. Conen, J. A. Huffman, V. Phillips, U. Pöschl, and D. C. Sands. 2014. Bioprecipitation: A feedback cycle linking earth history, ecosystem dynamics and land use through biological ice nucleators in the atmosphere. Glob Change Biol. 20 (2):341–351. doi: 10.1111/gcb.12447.
  • Morris, C. E., D. G. Georgakopoulos, and D. C. Sands. 2004. Ice nucleation active bacteria and their potential role in precipitation. J. Phys. IV 121:87–103. doi: 10.1051/jp4:2004121004.
  • Morris, C. E., C. Leyronas, and P. C. Nicot. 2014. Movement of bioaerosols in the atmosphere and the consequences for climate and microbial evolution. In Aerosol science, pp. 393–415.Chichester, UK: John Wiley & Sons, Ltd.
  • Morris, C. E., D. C. Sands, M. Bardin, R. Jaenicke, B. Vogel, C. Leyronas, P. A. Ariya, and R. Psenner. 2011. Microbiology and atmospheric processes: research challenges concerning the impact of airborne micro-organisms on the atmosphere and climate. Biogeosciences 8 (1):17–25. doi: 10.5194/bg-8-17-2011.
  • Morris, C. E., D. C. Sands, C. Glaux, J. Samsatly, S. Asaad, A. R. Moukahel, F. L. T. Gonçalves, and E. K. Bigg. 2013. Urediospores of rust fungi are ice nucleation active at >-10 °c and harbor ice nucleation active bacteria. Atmos. Chem. Phys. 13 (8):4223–4233. doi: 10.5194/acp-13-4223-2013.
  • Morris, C. E., S. Soubeyrand, E. K. Bigg, J. M. Creamean, and D. C. Sands. 2017. Mapping Rainfall feedback to reveal the potential sensitivity of precipitation to biological aerosols. Bull. Amer. Meteor. Soc. 98 (6):1109–1118. doi: 10.1175/BAMS-D-15-00293.1.
  • Negrin, M. M., M. T. Del Panno, and A. E. Ronco. 2007. Study of bioaerosols and site influence in, the La Plata Area (Argentina) using conventional and DNA (fingerprint) based methods. Aerobiologia (Bologna) 23 (4):249–258. doi: 10.1007/s10453-007-9069-8.
  • Negrin, M., M. T. Del Panno, C. G. Terada, and A. Ronco. 2009. Characterization of indoor and outdoor bioaerosols in urban, industrial and rural sites using conventional and DNA (fingerprint) based methods. In Aerosols: Chemistry, environmental impact and health effects, ed. D. Peretz, pp. 109–125. Hauppauge, NY: Nova Science Publishers, INC.
  • Nemecek-Marshall, M.,. R. LaDuca, and R. Fall. 1993. High-level expression of ice nuclei in a pseudomonas syringae strain is induced by nutrient limitation and low temperature. J. Bacteriol. 175 (13):4062–4070. doi: 10.1128/jb.175.13.4062-4070.1993.
  • Nemergut, D. R., E. K. Costello, M. Hamady, C. Lozupone, L. Jiang, S. K. Schmidt, N. Fierer, A. R. Townsend, C. C. Cleveland, L. Stanish, et al. 2011. Global patterns in the biogeography of bacterial taxa. Environ. Microbiol. 13 (1):135–144. doi: 10.1111/j.1462-2920.2010.02315.x.
  • Neufeld, K. N., A. P. Keinath, B. K. Gugino, M. T. McGrath, E. J. Sikora, S. A. Miller, M. L. Ivey, D. B. Langston, B. Dutta, T. Keever, et al. 2018. Predicting the risk of cucurbit downy mildew in the eastern United States using an integrated aerobiological model. Int. J. Biometeorol. 62 (4):655–668. doi: 10.1007/s00484-017-1474-2.
  • Noziere, B. 2016. CLOUDS. Don't forget the surface. Science 351 (6280):1396–1397. doi: 10.1126/science.aaf3253.
  • Núñez, A., G. Amo de Paz, A. Rastrojo, A. M. García, A. Alcamí, A. M. Gutiérrez-Bustillo, and D. A. Moreno. 2016a. Monitoring of airborne biological particles in outdoor atmosphere. Part 1: Importance, variability and ratios. Int. Microbiol. 19 (1):1–13.
  • Núñez, A., G. Amo de Paz, A. Rastrojo, A. M. García, A. Alcamí, A. Montserrat Gutiérrez-Bustillo, and D. A. Moreno. 2016b. Monitoring of airborne biological particles in outdoor atmosphere. Part 2: Metagenomics applied to urban environments. Int. Microbiol. 19 (2):69–80.
  • O’Dowd, C. D., and G. de Leeuw. 2007. Marine aerosol production: A review of the current knowledge. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 365 (1856):1753–1774. doi: 10.1098/rsta.2007.2043.
  • O’Sullivan, D., B. J. Murray, J. F. Ross, T. F. Whale, H. C. Price, J. D. Atkinson, N. S. Umo, and M. E. Webb. 2015. Relevance nanoscale biological fragments ice nucleation clouds. Sci. Rep. 5:1–7.
  • Oliveira, M., L. Delgado, H. Ribeiro, and I. Abreu. 2010. Fungal Spores from Pleosporales in the atmosphere of urban and rural locations in Portugal. J. Environ. Monit. 12 (5):1187–1194.
  • Oliveira, M., H. Ribeiro, J. L. Delgado, and I. Abreu. 2009. The effects of meteorological factors on airborne fungal spore concentration in two areas differing in urbanisation level. Int. J. Biometeorol. 53 (1):61–73. doi: 10.1007/s00484-008-0191-2.
  • Orellana, M. V., P. A. Matrai, C. Leck, C. D. Rauschenberg, A. M. Lee, and E. Coz. 2011. Marine microgels as a source of cloud condensation nuclei in the high Arctic. Proc. Natl. Acad. Sci. U.S.A. 108 (33):13612–13617. doi: 10.1073/pnas.1102457108.
  • Oteros, J., E. Bartusel, F. Alessandrini, A. Núñez, D. A. Moreno, H. Behrendt, C. Schmidt-Weber, C. Traidl-Hoffmann, and J. Buters. 2019. Artemisia pollen is the main vector for airborne endotoxin. J. Allergy Clin. Immunol. 143 (1):369–377. doi: 10.1016/j.jaci.2018.05.040.
  • Oteros, J., G. Pusch, I. Weichenmeier, U. Heimann, R. Möller, S. Röseler, C. Traidl-Hoffmann, C. Schmidt-Weber, and J. T. M. Buters. 2015. Automatic and online pollen monitoring. Int. Arch. Allergy Immunol. 167 (3):158–166.
  • Palframan, M. C., H. A. Gruszewski, D. G. Schmale, III, and C. A. Woolsey. 2014. Detection of a surrogate biological agent with a portable surface plasmon resonance sensor onboard an unmanned aircraft system. J. Unmanned Veh. Syst. 2 (4):103–118. doi: 10.1139/juvs-2013-0019.
  • Papadopoulos, N. G., I. Agache, S. Bavbek, B. M. Bilo, F. Braido, V. Cardona, A. Custovic, J. Demonchy, P. Demoly, P. Eigenmann, et al. 2012. Research needs in allergy: An EAACI Position Paper, in collaboration with EFA. Clin. Transl. Allergy 2 (1):21.
  • Passananti, M., V. Vinatier, A. M. Delort, G. Mailhot, and M. Brigante. 2016. Siderophores in cloud waters and potential impact on atmospheric chemistry: Photoreactivity of iron complexes under sun-simulated conditions. Environ. Sci. Technol. 50 (17):9324–9332. doi: 10.1021/acs.est.6b02338.
  • Pasteur, L. 1862. Sur les corpuscules organisés qui existent dans l’atmosphère, examen de la doctrine des générations spontanées, leçon professée à la Société clinique de Paris, le 19 mai 1861. Ann. Chim. Phys. 64:1–36.
  • Pearce, D. A., I. A. Alekhina, A. Terauds, A. Wilmotte, A. Quesada, A. Edwards, A. Dommergue, B. Sattler, B. J. Adams, C. Magalhães, et al. 2016. Aerobiology over Antarctica - A new initiative for atmospheric ecology. Front. Microbiol. 7:1–7. doi: 10.3389/fmicb.2016.00016.
  • Pearce, D. A., P. D. Bridge, K. A. Hughes, B. Sattler, R. Psenner, and N. J. Russell. 2009. Microorganisms in the atmosphere over Antarctica. FEMS Microbiol. Ecol. 69 (2):143–157. doi: 10.1111/j.1574-6941.2009.00706.x.
  • Peel, M. C., B. L. Finlayson, and T. A. McMahon. 2007. Updated world map of the köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 11 (5):1633–1644.
  • Pei-Chih, W., S. Huey-Jen, and L. Chia-Yin. 2000. Characteristics of indoor and outdoor airborne fungi at suburban and urban homes in two seasons. Sci. Total Environ. 253 (1–3):111–118. doi: 10.1016/s0048-9697(00)00423-x.
  • Perring, A. E., J. P. Schwarz, D. Baumgardner, M. T. Hernandez, D. V. Spracklen, C. L. Heald, R. S. Gao, G. Kok, G. R. McMeeking, J. B. McQuaid, et al. 2015. Airborne observations of regional variation in fluorescent aerosol across the United States. J. Geophys. Res. 120 (3):1153–1170. doi: 10.1002/2014JD022495.
  • Petters, S. S., and M. D. Petters. 2016. Surfactant effect on cloud condensation nuclei for two-component internally mixed aerosols. J. Geophys. Res. 121 (4):1878–1895.
  • Petters, M. D., and T. P. Wright. 2015. Revisiting ice nucleation from precipitation samples. Geophys. Res. Lett. 42 (20):8758–8766. doi: 10.1002/2015GL065733.
  • Pointing, S. B., and J. Belnap. 2012. Microbial colonization and controls in dryland systems. Nat. Rev. Microbiol. 10 (8):551–562. doi: 10.1038/nrmicro2831.
  • Polymenakou, P. N., M. Mandalakis, E. G. Stephanou, and A. Tselepides. 2008. Particle size distribution of airborne microorganisms and pathogens during an intense African dust event in the eastern Mediterranean. Environ. Health Perspect. 116 (3):292–296. doi: 10.1289/ehp.10684.
  • Pöschl, U., S. T. Martin, B. Sinha, Q. Chen, S. S. Gunthe, J. A. Huffman, S. Borrmann, D. K. Farmer, R. M. Garland, G. Helas, et al. 2010. Rainforest aerosols as biogenic nuclei of clouds and precipitation in the Amazon. Science 329 (5998):1513–1516. doi: 10.1126/science.1191056.
  • Pouzet, G., E. Peghaire, M. Aguès, J. L. Baray, F. Conen, and P. Amato. 2017. Atmospheric processing and variability of biological ice nucleating particles in precipitation at Opme, France. Atmosphere (Basel) 8 (11):229. doi: 10.3390/atmos8110229.
  • Powers, C. W., R. Hanlon, H. Grothe, A. J. Prussin, L. C. Marr, and D. G. Schmale, III. 2018. Coordinated sampling of microorganisms over freshwater and saltwater environments using an unmanned surface vehicle (USV) and a small unmanned aircraft system (sUAS). Front. Microbiol. 9:1668. doi: 10.3389/fmicb.2018.01668.
  • Prenni, A. J., M. D. Petters, S. M. Kreidenweis, C. L. Heald, S. T. Martin, P. Artaxo, R. M. Garland, A. G. Wollny, and U. Pöschl. 2009. Relative roles of biogenic emissions and Saharan dust as ice nuclei in the Amazon basin. Nat. Geosci. 2 (6):402–405. doi: 10.1038/ngeo517.
  • Prospero, J. M., E. Blades, G. Mathison, and R. Naidu. 2005. Interhemispheric transport of viable fungi and bacteria from Africa to the Caribbean with soil dust. Aerobiologia (Bologna) 21 (1):1–19. doi: 10.1007/s10453-004-5872-7.
  • Pummer, B. G., H. Bauer, J. Bernardi, S. Bleicher, and H. Grothe. 2012. Suspendable macromolecules are responsible for ice nucleation activity of birch and conifer pollen. Atmos. Chem. Phys. 12 (5):2541–2550. doi: 10.5194/acp-12-2541-2012.
  • Pummer, B. G., C. Budke, S. Augustin-Bauditz, D. Niedermeier, L. Felgitsch, C. J. Kampf, R. G. Huber, K. R. Liedl, T. Loerting, T. Moschen, et al. 2015. Ice nucleation by water-soluble macromolecules. Atmos. Chem. Phys. 15 (8):4077–4091. doi: 10.5194/acp-15-4077-2015.
  • Puspitasari, F., T. Maki, G. Shi, C. Bin, F. Kobayashi, H. Hasegawa, and Y. Iwasaka. 2016. Phylogenetic analysis of bacterial species compositions in sand dunes and dust aerosol in an Asian dust source area, the Taklimakan Desert. Air Qual. Atmos. Heal. 9 (6):631–644.
  • Rathnayake, C. M., N. Metwali, Z. Baker, T. Jayarathne, P. A. Kostle, P. S. Thorne, P. T. O’Shaughnessy, and E. A. Stone. 2016. Urban enhancement of Pm10 bioaerosol tracers relative to background locations in the Midwestern United States. J. Geophys. Res. Atmos. 121 (9):5071–5089. doi: 10.1002/2015JD024538.
  • Rathnayake, C. M., N. Metwali, T. Jayarathne, J. Kettler, Y. Huang, P. S. Thorne, P. T. O’Shaughnessy, and E. A. Stone. 2017. Influence of rain on the abundance of bioaerosols in fine and coarse particles. Atmos. Chem. Phys. 17 (3):2459–2475. doi: 10.5194/acp-17-2459-2017.
  • Raupach, M. R., R. A. Antonia, and S. Rajagopalan. 1991. Rough-wall turbulent boundary layers. Appl. Mech. Rev. 44 (1):1–25. doi: 10.1115/1.3119492.
  • Renard, P., I. Canet, M. Sancelme, N. Wirgot, L. Deguillaume, and A.-M. Delort. 2016. Screening of cloud microorganisms isolated at the Puy De Dôme (France) station for the production of biosurfactants. Atmos. Chem. Phys. 16 (18):12347–12358. doi: 10.5194/acp-16-12347-2016.
  • Reponen, T., S. A. Grinshpun, K. L. Conwell, J. Wiest, and M. Anderson. 2001. Aerodynamic versus physical size of spores: Measurement and implication for respiratory deposition. Grana 40 (3):119–125. doi: 10.1080/00173130152625851.
  • Reponen, T., K. Willeke, V. Ulevicius, A. Reponen, and S. A. Grinshpun. 1996. Effect of relative humidity on the aerodynamic diameter and respiratory deposition of fungal spores. Atmos. Environ. 30 (23):3967–3974. doi: 10.1016/1352-2310(96)00128-8.
  • Rodó, X., J. Ballester, D. Cayan, M. E. Melish, Y. Nakamura, R. Uehara, and J. C. Burns. 2011. Association of Kawasaki disease with tropospheric wind patterns. Sci. Rep. 1 (152):152. doi: 10.1038/srep00152.
  • Rogers, L. A., and F. C. Meier. 1937. The National Geographic Society-US Army Air Corps stratosphere flight of 1935 in the balloon “Explorer Ii.” QJR Meteorol. Soc. 63:217–218.
  • Rojo, J., J. Oteros, R. Pérez-Badia, P. Cervigón, Z. Ferencova, A. M. Gutiérrez-Bustillo, K. C. Bergmann, G. Oliver, M. Thibaudon, R. Albertini, et al. 2019. Near-ground effect of height on pollen exposure. Environ. Res. 174:160–169. doi: 10.1016/j.envres.2019.04.027.
  • Rubel, G. O. 1997. Measurement of water vapor sorption by single biological aerosols. Aerosol Sci. Technol. 27 (4):481–490. doi: 10.1080/02786829708965488.
  • Ruske, S., D. O. Topping, V. E. Foot, P. H. Kaye, W. R. Stanley, I. Crawford, A. P. Morse, and M. W. Gallagher. 2017. Evaluation of machine learning algorithms for classification of primary biological aerosol using a new UV-LIF spectrometer. Atmos. Meas. Tech. 10 (2):695–708. doi: 10.5194/amt-10-695-2017.
  • Russell, L. M., L. N. Hawkins, A. A. Frossard, P. K. Quinn, and T. S. Bates. 2010. Carbohydrate-like composition of submicron atmospheric particles and their production from ocean bubble bursting. Proc. Natl. Acad. Sci. 107 (15):6652–6657. doi: 10.1073/pnas.0908905107.
  • Saari, S., J. V. Niemi, T. RöNkkö, H. Kuuluvainen, A. JäRvinen, L. Pirjola, M. Aurela, R. Hillamo, and J. Keskinen, 2015. Seasonal and diurnal variations of fluorescent bioaerosol concentration and size distribution in the urban environment. Aerosol Air Qual. Res. 15 (2):572–581. doi: 10.4209/aaqr.2014.10.0258.
  • Sahyoun, M., H. Wex, U. Gosewinkel, T. Šantl-Temkiv, N. W. Nielsen, K. Finster, J. H. Sørensen, F. Stratmann, and U. S. Korsholm. 2016. On the usage of classical nucleation theory in quantification of the impact of bacterial INP on weather and climate. Atmos. Environ. 139:230–240.
  • Santarpia, J. L., Y.-L. Pan, S. C. Hill, N. Baker, B. Cottrell, L. McKee, S. Ratnesar-Shumate, and R. G. Pinnick. 2012. Changes in fluorescence spectra of bioaerosols exposed to ozone in a laboratory reaction chamber to simulate atmospheric aging. Opt. Express 20 (28):29867. doi: 10.1364/OE.20.029867.
  • Šantl-Temkiv, T., P. Amato, U. Gosewinkel, R. Thyrhaug, A. Charton, B. Chicot, K. W. Finster, G. Bratbak, and J. Löndahl. 2017. High-flow-rate impinger for the study of concentration, viability, metabolic activity, and ice-nucleation activity of airborne bacteria. Environ. Sci. Technol. 51 (19):11224–11234. doi: 10.1021/acs.est.7b01480.
  • Šantl-Temkiv, T., K. Finster, T. Dittmar, B. M. Hansen, R. Thyrhaug, N. W. Nielsen, and U. G. Karlson. 2013. Hailstones: A window into the microbial and chemical inventory of a storm cloud. PLoS One 8 (1):e53550. doi: 10.1371/journal.pone.0053550.
  • Šantl-Temkiv, T., K. Finster, B. M. Hansen, L. Pašić, and U. G. Karlson. 2013. Viable methanotrophic bacteria enriched from air and rain can oxidize methane at cloud-like conditions. Aerobiologia (Bologna) 29 (3):373–384. doi: 10.1007/s10453-013-9287-1.
  • Šantl-Temkiv, T., U. Gosewinkel, P. Starnawski, M. Lever, and K. Finster. 2018. Aeolian dispersal of bacteria in southwest Greenland: Their sources, abundance, diversity and physiological states. Fems Micriobiol. Ecol. 94 (4):1–10.
  • Šantl-Temkiv, T., R. Lange, D. Beddows, R. Rauter, S. Pilgaard, M. Dall’Osto, N. Gunde-Cimerman, A. Massling, and H. Wex. 2019. Biogenic sources of ice nucleation particles at the High Arctic Site Villum Research Station. Environ. Sci. Technol. 53 (18):10580–10590. doi: 10.1021/acs.est.9b00991.
  • Šantl-Temkiv, T., M. Sahyoun, K. Finster, S. Hartmann, S. Augustin-Bauditz, F. Stratmann, H. Wex, T. Clauss, N. Woetmann, J. Havskov, et al. 2015. Characterization of airborne ice-nucleation-active bacteria and bacterial fragments. 109 :105–117. doi: 10.1016/j.atmosenv.2015.02.060.
  • Sattler, B., H. Puxbaum, and R. Psenner. 2001. Bacterial growth in supercooled cloud droplets. Geophys. Res. Lett. 28 (2):239–242. doi: 10.1029/2000GL011684.
  • Šaulienė, I., L. Šukienė, G. Daunys, G. Valiulis, L. Vaitkevičius, P. Matavulj, S. Brdar, M. Panic, B. Sikoparija, B. Clot, et al. 2019. Automatic pollen recognition with the rapid-E particle counter: The first-level procedure, experience and next steps. Atmos. Meas. Technol. 12 (6):3435–3452. doi: 10.5194/amt-12-3435-2019.
  • Savage, N. J., and J. A. Huffman. 2018. Evaluation of a hierarchical agglomerative clustering method applied to WIBS laboratory data for improved discrimination of biological particles by comparing data preparation techniques. Atmos. Meas. Tech. 11 (8):4929–4942. doi: 10.5194/amt-11-4929-2018.
  • Savage, N. J., C. E. Krentz, T. Könemann, T. T. Han, G. Mainelis, C. Pöhlker, and J. Alex Huffman. 2017. Systematic characterization and fluorescence threshold strategies for the wideband integrated bioaerosol sensor (WIBS) using size-resolved biological and interfering particles. Atmos. Meas. Tech. 10 (11):4279–4302. doi: 10.5194/amt-10-4279-2017.
  • Saxena, V. K. 1983. Evidence of the biogenic nuclei involvement in Antarctic coastal cloudst. J. Phys. Chem. 87 (21):4130–4134. doi: 10.1021/j100244a029.
  • Saxena, V. K., and D. C. Weintraub. 1988. Ice forming nuclei concentrations at Palmer Station, Antarctica. In Atmospheric Aerosols and Nucleation. Lecture Notes in Physics, ed. P. E. Wagner and G. Vali, vol. 309. Berlin, Heidelberg: Springer. doi: 10.1007/3-540-50108-8_1158.
  • Schmale Iii, D. G., B. R. Dingus, and C. Reinholtz. 2008. Development and application of an autonomous unmanned aerial vehicle for precise aerobiological sampling above agricultural fields. J. Field Rob. 25 (3):133–147. doi: 10.1002/rob.20232.
  • Schmale, III, D. G., S. D. Ross, T. L. Fetters, P. Tallapragada, A. K. Wood-Jones, and B. Dingus. 2012. Isolates of Fusarium graminearum collected 40–320 meters above ground level cause Fusarium head blight in wheat and produce trichothecene mycotoxins. Aerobiologia (Bologna) 28 (1):1–11. doi: 10.1007/s10453-011-9206-2.
  • Schnell, R. C. 1977. Ice nuclei in seawater, fog water and marine air off the coast of Nova Scotia: Summer 1975. J. Atmos. Sci. 34 (8):1299–1305. doi: 10.1175/1520-0469(1977)034<1299:INISFW>2.0.CO;2.
  • Schumacher, C. J., C. Pöhlker, P. Aalto, V. Hiltunen, T. Petäjä, M. Kulmala, U. Pöschl, and J. A. Huffman. 2013. Seasonal cycles of fluorescent biological aerosol particles in boreal and semi-arid forests of Finland and Colorado. Atmos. Chem. Phys. 13 (23):11987–12001. doi: 10.5194/acp-13-11987-2013.
  • Sesartic, A., U. Lohmann, and T. Storelvmo. 2012. Bacteria in the ECHAM5-HAM Global Climate Model. Atmos. Chem. Phys. 12 (18):8645–8661. doi: 10.5194/acp-12-8645-2012.
  • Šikoparija, B., O. Marko, M. Panić, D. Jakovetić, and P. Radišić. 2018a. How to prepare a pollen calendar for forecasting daily pollen concentrations of ambrosia, betula and poaceae? Aerobiologia (Bologna) 34 (2):203–217. doi: 10.1007/s10453-018-9507-9.
  • Šikoparija, B., G. Mimić, M. Panić, O. Marko, P. Radišić, T. Pejak-Šikoparija, and A. Pauling. 2018b. High temporal resolution of airborne ambrosia pollen measurements above the source reveals emission characteristics. Atmos. Environ. 192:13–23. doi: 10.1016/j.atmosenv.2018.08.040.
  • Šikoparija, B., C. A. Skjøth, K. Alm Kübler, A. Dahl, J. Sommer, L. Grewling, P. Radišić, and M. Smith. 2013. A mechanism for long distance transport of Ambrosia pollen from the Pannonian plain. Agric. For. Meteorol. 180:112–117. doi: 10.1016/j.agrformet.2013.05.014.
  • Sikoparija, B., Galán, C. Smith, M. Abramidze, T. Adams-Groom, B. Albertini, R. Anelli, P. Bastl, K. Bigagli, V. Bonini, et al. 2017. Pollen-monitoring: Between analyst proficiency testing. Aerobiologia (Bologna) 33 (2):191–199.
  • Smith, D. J., D. W. Griffin, R. D. McPeters, P. D. Ward, and A. C. Schuerger. 2011. Microbial survival in the stratosphere and implications for global dispersal. Aerobiologia (Bologna) 27 (4):319–332. doi: 10.1007/s10453-011-9203-5.
  • Smith, D. J., J. D. Ravichandar, S. Jain, D. W. Griffin, H. Yu, Q. Tan, J. Thissen, T. Lusby, P. Nicoll, S. Shedler et al. 2018. Airborne bacteria in earth’s lower stratosphere resemble taxa detected in the troposphere: Results from a new NASA aircraft bioaerosol collector (ABC). Front. Microbiol. 9:1752. doi: 10.3389/fmicb.2018.01752.
  • Smith, D. J., H. J. Timonen, D. A. Jaffe, D. W. Griffin, M. N. Birmele, K. D. Perry, P. D. Ward, and M. S. Roberts. 2013. Intercontinental dispersal of bacteria and archaea by transpacific winds. Appl. Environ. Microbiol. 79 (4):1134–1139. doi: 10.1128/AEM.03029-12.
  • Smith, B., M. Beman, D. Gravano, and Y. Chen. 2015. Development and validation of a microbe detecting UAV payload. Paper presented at 2015 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED-UAS), IEEE, Cancun, Mexico, pp. 258–264.
  • Sofiev, M., and K.-C. Bergmann, eds. 2013. Allergenic pollen: A review of the production, release, distribution and health impacts, 252 pp. Dordrecht Heidelberg: Springer. ISBN-13: 978-9400748804.
  • Sofiev, M., P. Siljamo, H. Ranta, and A. Rantio-Lehtimäki. 2006. Towards numerical forecasting of long-range air transport of birch pollen: Theoretical considerations and a feasibility study. Int. J. Biometeorol. 50 (6):392–402. doi: 10.1007/s00484-006-0027-x.
  • Sterflinger, K., and G. Piñar. 2013. Microbial deterioration of cultural heritage and works of art - tilting at windmills? Appl. Microbiol. Biotechnol. 97 (22):9637–9646. doi: 10.1007/s00253-013-5283-1.
  • Sullivan, S. C., C. Hoose, A. Kiselev, T. Leisner, and A. Nenes. 2018. Initiation of secondary ice production in clouds. Atmos. Chem. Phys. 18 (3):1593–1610. doi: 10.5194/acp-18-1593-2018.
  • Suski, K. J., T. C. J. Hill, E. J. T. Levin, A. Miller, P. J. DeMott, and S. M. Kreidenweis. 2018. Agricultural harvesting emissions of ice-nucleating particles. Atmos. Chem. Phys. 18 (18):13755–13771. doi: 10.5194/acp-18-13755-2018.
  • Swanson, B. E., and J. A. Huffman. 2018. Development and characterization of an inexpensive single-particle fluorescence spectrometer for bioaerosol monitoring. Opt. Express 26 (3):3646–3660. doi: 10.1364/OE.26.003646.
  • Tang, M., W. Gu, Q. Ma, Y. Jie Li, C. Zhong, S. Li, X. Yin, R. J. Huang, H. He, and X. Wang. 2019. Water adsorption and hygroscopic growth of six anemophilous pollen species: The effect of temperature. Atmos. Chem. Phys. 19 (4):2247–2258. doi: 10.5194/acp-19-2247-2019.
  • Techy, L., D. G. Schmale, III, and C. A. Woolsey. 2010. Coordinated aerobiological sampling of a plant pathogen in the lower atmosphere using two autonomous unmanned aerial vehicles. J. F. Robot 27 (3):335–343.
  • Temkiv, T. Š., K. Finster, B. M. Hansen, N. W. Nielsen, and U. G. Karlson. 2012. The microbial diversity of a storm cloud as assessed by hailstones. FEMS Microbiol. Ecol. 81 (3):684–695. doi: 10.1111/j.1574-6941.2012.01402.x.
  • Tesson, S. V. M., and T. Šantl-Temkiv. 2018. Ice nucleation activity and aeolian dispersal success in airborne and aquatic microalgae. Front. Microbiol. 9:1–14.
  • Thomson, E. S., D. Weber, H. G. Bingemer, J. Tuomi, M. Ebert, and J. B. C. Pettersson. 2018. Intensification of ice nucleation observed in ocean ship emissions. Sci. Rep. 8 (1):1111. doi: 10.1038/s41598-018-19297-y.
  • Tobo, Y., K. Adachi, P. J. DeMott, T. C. J. Hill, D. S. Hamilton, N. M. Mahowald, N. Nagatsuka, S. Ohata, J. Uetake, Y. Kondo, et al. 2019. Glacially sourced dust as a potentially significant source of ice nucleating particles. Nat. Geosci. 12 (4):253–258. doi: 10.1038/s41561-019-0314-x.
  • Tobo, Y., P. J. Demott, T. C. J. Hill, A. J. Prenni, N. G. Swoboda-Colberg, G. D. Franc, and S. M. Kreidenweis. 2014. Organic matter matters for ice nuclei of agricultural soil origin. Atmos. Chem. Phys. 14 (16):8521–8531. doi: 10.5194/acp-14-8521-2014.
  • Tong, Y., and B. Lighthart. 2000. The annual bacterial particle concentration and size distribution in the ambient atmosphere in a rural area of the Willamette Valley, Oregon. Aerosol Sci. Technol. 32 (5):393–403. doi: 10.1080/027868200303533.
  • Turnbull, P. C., P. M. Lindeque, J. Le Roux, A. M. Bennett, and S. R. Parks. 1998. Airborne movement of anthrax spores from carcass sites in the Etosha National Park, Namibia. J. Appl. Microbiol. 84 (4):667–676. doi: 10.1046/j.1365-2672.1998.00394.x.
  • Uetake, J., Y. Tobo, Y. Uji, T. C. J. Hill, P. J. Demott, S. M. Kreidenweis, and R. Misumi. 2019. Seasonal changes of airborne communities over Tokyo and influence of local meteorology. Front. Microbiol. 10:1–12. doi: 10.3389/fmicb.2019.01572.
  • United Nations. 2015. U.N. Sustainable Development Goals. Accessed September 10, 2019. https://sustainabledevelopment.un.org/
  • Vaitilingom, M., L. Deguillaume, V. Vinatier, M. Sancelme, P. Amato, N. Chaumerliac, and A.-M. Delort. 2013. Potential impact of microbial activity on the oxidant capacity and organic carbon budget in clouds. Proc. Natl. Acad. Sci. 110 (2):559–564. doi: 10.1073/pnas.1205743110.
  • Vaïtilingom, M., L. Deguillaume, V. Vinatier, M. Sancelme, P. Amato, N. Chaumerliac, and A.-M. Delort. 2013. Potential impact of microbial activity on the oxidant capacity and organic carbon budget in clouds. Proc. Natl. Acad. Sci. U. S. A. 110 (2):559–564. doi: 10.1073/pnas.1205743110.
  • Vesala, T., N. Kljun, Ü. Rannik, J. Rinne, A. Sogachev, T. Markkanen, K. Sabelfeld, T. Foken, and M. Y. Leclerc. 2008. Flux and concentration footprint modelling: State of the art. Environ. Pollut. 152 (3):653–666. doi: 10.1016/j.envpol.2007.06.070.
  • Villa, T. F., F. Salimi, K. Morton, L. Morawska, and F. Gonzalez. 2016. Development and validation of a UAV based system for air pollution measurements. Sensors (Switzerland) 16 (12):2202. doi: 10.3390/s16122202.
  • Vinatier, V., N. Wirgot, M. Joly, M. Sancelme, M. Abrantes, L. Deguillaume, and A. M. Delort. 2016. Siderophores in cloud waters and potential impact on atmospheric chemistry: Production by microorganisms isolated at the Puy De Dôme Station. Environ. Sci. Technol. 50 (17):9315–9323. doi: 10.1021/acs.est.6b02335.
  • von Blohn, N., S. K. Mitra, K. Diehl, and S. Borrmann. 2005. The ice nucleating ability of pollen: Part III: New laboratory studies in immersion and contact freezing modes including more pollen types. Atmos. Res. 78 (3–4):182–189. doi: 10.1016/j.atmosres.2005.03.008.
  • Von Der Weiden, S. L., F. Drewnick, and S. Borrmann. 2009. Particle Loss Calculator - A new software tool for the assessment of the performance of aerosol inlet systems. Atmos. Meas. Tech. 2 (2):479–494. doi: 10.5194/amt-2-479-2009.
  • Waggoner, P. E. 1973. The removal of Helminthosporium maydis spores by wind. Phytopathology 63 (10):1252–1255. doi: 10.1094/Phyto-63-1252.
  • Wang, X., G. B. Deane, K. A. Moore, O. S. Ryder, M. D. Stokes, C. M. Beall, D. B. Collins, M. V. Santander, S. M. Burrows, C. M. Sultana, et al. 2017. The role of jet and film drops in controlling the mixing state of submicron sea spray aerosol particles. Proc. Natl. Acad. Sci. 114 (27):6978–6983. doi: 10.1073/pnas.1702420114.
  • Wang, B., T. H. Harder, S. T. Kelly, D. S. Piens, S. China, L. Kovarik, M. Keiluweit, B. W. Arey, M. K. Gilles, and A. Laskin. 2016. Airborne soil organic particles generated by precipitation. Nature Geosci. 9 (6):433–437. doi: 10.1038/ngeo2705.
  • Wei, K., Zou, Z. Zheng, J. Li, F. Shen, C.-Y. Wu, Y. Wu, M. Hu, and M. Yao. 2016. Ambient bioaerosol particle dynamics observed during haze and sunny days in Beijing. Sci. Total Environ. 550:751–759. doi: 10.1016/j.scitotenv.2016.01.137.
  • Weil, T., C. De Filippo, D. Albanese, C. Donati, M. Pindo, L. Pavarini, F. Carotenuto, M. Pasqui, L. Poto, J. Gabrieli, et al. 2017. Legal immigrants: Invasion of alien microbial communities during winter occurring desert dust storms. Microbiome 5 (1):32. doi: 10.1186/s40168-017-0249-7.
  • Werchan, M., T. Sehlinger, F. Goergen, and K.-C. Bergmann. 2018. The pollator: A personal pollen sampling device. Allergo J. Int. 27 (1):1–3. doi: 10.1007/s40629-017-0034-y.
  • Wex, H., L. Huang, W. Zhang, H. Hung, R. Traversi, S. Becagli, R. J. Sheesley, C. E. Moffett, T. E. Barrett, R. Bossi, et al. 2019. Annual variability of ice nucleating particle concentrations at different Arctic locations. Atmos. Chem. Phys. 19:1–31. doi: 10.5194/acp-19-5293-2019.
  • Whitehead, J. D., E. Darbyshire, J. Brito, H. M. J. Barbosa, I. Crawford, R. Stern, M. W. Gallagher, P. H. Kaye, J. D. Allan, H. Coe, et al. 2016. Biogenic cloud nuclei in the central Amazon during the transition from wet to dry season. Atmos. Chem. Phys. 16 (15):9727–9743. doi: 10.5194/acp-16-9727-2016.
  • Whitehead, J. D., M. W. Gallagher, J. R. Dorsey, N. Robinson, A. M. Gabey, H. Coe, G. McFiggans, M. J. Flynn, J. Ryder, E. Nemitz, et al. 2010. Aerosol fluxes and dynamics within and above a tropical rainforest in South-East Asia. Atmos. Chem. Phys. 10 (19):9369–9382. doi: 10.5194/acp-10-9369-2010.
  • Wiedensohler, A., W. Birmili, J. P. Putaud, and J. Ogren. 2014. Recommendations for aerosol sampling. In Aerosol science: Technology and applications, ed. I. Colbeck and M. Lazaridis, 45–59. Hoboken, New Jersey: John Wiley & Sons, Ltd.
  • Wilkinson, D. M., S. Koumoutsaris, E. A. D. Mitchell, and I. Bey. 2012. Modelling the effect of size on the aerial dispersal of microorganisms. J. Biogeogr. 39 (1):89–97. doi: 10.1111/j.1365-2699.2011.02569.x.
  • Wilson, T. W., L. A. Ladino, P. A. Alpert, M. N. Breckels, I. M. Brooks, J. Browse, S. M. Burrows, K. S. Carslaw, J. A. Huffman, C. Judd, et al. 2015. A marine biogenic source of atmospheric ice-nucleating particles. Nature 525 (7568):234–238. doi: 10.1038/nature14986.
  • Wirgot, N., V. Vinatier, L. Deguillaume, M. Sancelme, and A. M. Delort. 2017. H2O2 modulates the energetic metabolism of the cloud microbiome. Atmos. Chem. Phys. 17 (24):14841–14851. doi: 10.5194/acp-17-14841-2017.
  • Wolf, R., I. El-Haddad, J. G. Slowik, K. Dällenbach, E. Bruns, J. Vasilescu, U. Baltensperger, and A. S. H. Prévôt. 2017. Contribution of bacteria-like particles to PM2.5 aerosol in urban and rural environments. Atmos. Environ. 160:97–106. doi: 10.1016/j.atmosenv.2017.04.001.
  • Womack, A. M., P. E. Artaxo, F. Y. Ishida, R. C. Mueller, S. R. Saleska, K. T. Wiedemann, B. J. M. Bohannan, and J. L. Green. 2015. Characterization of active and total fungal communities in the atmosphere over the Amazon Rainforest. Biogeosciences. 12(21):6337–6349. doi: 10.5194/bg-12-6337-2015.
  • Womack, A. M., B. J. M. Bohannan, and J. L. Green. 2010. Biodiversity and biogeography of the atmosphere. Philos. Trans. R. Soc. B Biol. Sci. 365 (1558):3645–3653.
  • Wright, T. P., J. D. Hader, G. R. McMeeking, and M. D. Petters. 2014. High relative humidity as a trigger for widespread release of ice nuclei. Aerosol Sci. Technol. 48 (11):i–v. doi: 10.1080/02786826.2014.968244.
  • Wu, Y., A. Calis, Y. Luo, C. Chen, M. Lutton, Y. Rivenson, X. Lin, H. C. Koydemir, Y. Zhang, H. Wang, et al. 2018. Label-free bioaerosol sensing using mobile microscopy and deep learning. ACS Photonics 5 (11):4617–4627. doi: 10.1021/acsphotonics.8b01109.
  • Wu, Y.-H., C.-C. Chan, C. Y. Rao, C.-T. Lee, H.-H. Hsu, Y.-H. Chiu, and H. J. Chao. 2007. Characteristics, determinants, and spatial variations of ambient fungal levels in the subtropical Taipei metropolis. Atmos. Environ. 41 (12):2500–2509. doi: 10.1016/j.atmosenv.2006.11.035.
  • Xu, Z., Y. Wu, F. Shen, Q. Chen, M. Tan, and M. Yao. 2011. Bioaerosol science, technology, and engineering: Past, present, and future. Aerosol Sci. Technol. 45 (11):1337–1349. doi: 10.1080/02786826.2011.593591.
  • Yamaguchi, N., T. Ichijo, A. Sakotani, T. Baba, and M. Nasu. 2012. Global dispersion of bacterial cells on Asian dust. Sci. Rep. 2 :525doi: 10.1038/srep00525.
  • Yamamoto, N., Y. Matsuki, H. Yokoyama, and H. Matsuki. 2015. Relationships among indoor, outdoor, and personal airborne Japanese cedar pollen counts. PLoS One 10 (6):e0131710–14. doi: 10.1371/journal.pone.0131710.
  • Yang, Y., S. Yokobori, J. Kawaguchi, T. Yamagami, I. Iijima, N. Izutsu, H. Fuke, Y. Saitoh, Y. Matsuzaka, M. Namiki, et al. 2008. Investigation of cultivable microorganisms in the stratosphere collected by using a balloon in 2005. JAXA Res. Dev. Rep. 35–42. https://repository.exst.jaxa.jp/dspace/handle/a-is/18956
  • Yao, M. 2018. Reprint of bioaerosol: A bridge and opportunity for many scientific research fields. J. Aerosol Sci. 119:91–96. doi: 10.1016/j.jaerosci.2018.01.009.
  • Zavala, J., K. Lichtveld, S. Ebersviller, J. L. Carson, G. W. Walters, I. Jaspers, H. E. Jeffries, K. G. Sexton, and W. Vizuete. 2014. The gillings sampler - An electrostatic air sampler as an alternative method for aerosol in vitro exposure studies. Chem. Biol. Interact. 220:158–168.
  • Ziemba, L. D., A. J. Beyersdorf, G. Chen, C. A. Corr, S. N. Crumeyrolle, G. Diskin, C. Hudgins, R. Martin, T. Mikoviny, R. Moore, et al. 2016. Airborne observations of bioaerosol over the Southeast United States using a wideband integrated bioaerosol sensor. J. Geophys. Res. 121 (14):8506–8524. doi: 10.1002/2015JD024669.
  • Ziska, L. H., L. Makra, S. K. Harry, N. Bruffaerts, M. Hendrickx, F. Coates, A. Saarto, M. Thibaudon, G. Oliver, A. Damialis, et al. 2019. Temperature-related changes in airborne allergenic pollen abundance and seasonality across the northern hemisphere: A retrospective data analysis. Lancet Planet. Health 3 (3):124–131.