8,188
Views
102
CrossRef citations to date
0
Altmetric
Review Article

Review of recent literature on the light absorption properties of black carbon: Refractive index, mass absorption cross section, and absorption function

, , , ORCID Icon, &
Pages 33-51 | Received 15 May 2019, Accepted 18 Sep 2019, Published online: 18 Oct 2019

References

  • Bescond, A., J. Yon, F.-X. Ouf, C. Rozé, A. Coppalle, P. Parent, D. Ferry, and C. Laffon. 2016. Soot optical properties determined by analyzing extinction spectra in the visible near-UV: Toward an optical speciation according to constituents and structure. J. Aerosol Sci. 101:118–132. doi:10.1016/j.jaerosci.2016.08.001.
  • Bladh, H., J. Johnsson, N.-E. Olofsson, A. Bohlin, and P.-E. Bengtsson. 2011. Optical soot characterization using two-color laser-induced incandescence (2C-LII) in the soot growth region of a premixed flat flame. Proc. Combust. Inst. 33(1):641–648. doi:10.1016/j.proci.2010.06.166.
  • Bohren, C. F., and D. R. Huffman. 1983. Absorption and scattering of light by small particles. New York: John Wiley & Sons.
  • Bond, T. C. 2001. Spectral dependence of visible light absorption by carbonaceous particles emitted from coal combustion. Geo. Res. Lett. 28(21):4075–4078. doi:10.1029/2001GL013652.
  • Bond, T. C., and R. W. Bergstrom. 2006. Light absorption by carbonaceous particles: An investigative review. Aerosol Sci. Technol. 40(1):27–67. doi:10.1080/02786820500421521.
  • Bond, T. C., S. J. Doherty, D. W. Fahey, P. M. Forster, T. Berntsen, B. J. DeAngelo, M. G. Flanner, S. Ghan, B. Kärcher, D. Koch, et al. 2013. Bounding the role of black carbon in the climate system: a scientific assessment. J. Geophys. Res. Atmos 118(11):5380–5552. doi:10.1002/jgrd.50171.
  • Bouvier, M., J. Yon, G. Lefevre, and F. Grisch. 2019. A novel approach for in-situ soot size distribution measurement based on spectrally resolved light scattering. J. Quant. Spectrosc. Radiat. Transf. 225:58–68. doi:10.1016/j.jqsrt.2018.12.018.
  • Chang, H., and T. T. Charalampopoulos. 1990. Determination of the wavelength dependence of refractive indices of flame soot. Proc. R. Soc. London A 430(1880):577–591. doi:10.1098/rspa.1990.0107.
  • Choi, M. Y., G. W. Mulholland, A. Hamins, and T. Kashiwagi. 1995. Comparisons of the soot volume fraction using gravimetric and light extinction techniques. Combust. Flame 102(1-2):161–169. doi:10.1016/0010-2180(94)00282-W.
  • Corbin, J. C., H. Czech, D. Massabo, F. Buatier de Mongeot, G. Jakobi, F. Liu, P. Lobo, C. Mennucci, A. A. Mensah, J. Orasche, et al. 2019. Infrared-absorbing carbonaceous tar can dominate light absorption by marine-engine exhaust. NPJ Climate and Atmospheric Climate Sci 2:12. doi:10.1038/s41612-019-0069-5.
  • Coderre, A. R., K. A. Thomson, D. R. Snelling, and M. R. Johnson. 2011. Spectrally resolved light absorption properties of cooled soot from a methane flame. appl. Physics B 104(1):175–188. doi:10.1007/s00340-011-4448-9.
  • Cross, E. S., T. B. Onasch, A. Ahern, W. Wrobel, J. G. Slowik, J. Olfert, D. A. Lack, P. Massoli, C. D. Cappa, J. P. Schwarz, et al. 2010. Soot particle studies – instrument inter-comparison – project overview. Aerosol sci. technol. 44(8):592–611. doi:10.1080/02786826.2010.482113.
  • Dastanpour, R., A. Momenimovahed, K. Thomson, J. Olfert, and S. Rogak. 2017. Variation of the optical properties of soot as a function of particle mass. Carbon 124:201–211. doi:10.1016/j.carbon.2017.07.005.
  • Draine, B., and P. J. Flatau. 2010. User guide to the discrete dipole approximation code DDSCAT 7.1.
  • Durdina, L., P. Lobo, M. B. Trueblood, E. A. Black, S. Achterberg, D. E. Hagen, B. T. Brem, and J. Wang. 2016. Response of real-time black carbon mass instruments to mini-CAST soot. Aerosol sci. technol. 50(9):906–918. doi:10.1080/02786826.2016.1204423.
  • Farias, T. L., Ü. Ö. Köylü, and M. G. Carvalho. 1996. Range of validity of the Rayleigh-Debye-Gans theory for optics of fractal aggregates. Appl. Opt. 35(33):6560–6567. doi:10.1364/AO.35.006560.
  • Ferge, T., E. Karg, A. Schröppel, K. R. Coffee, H. J. Tobias, M. Frank, E. E. Gard, and R. Zimmermann. 2006. Fast determination of the relative elemental and organic carbon content of aerosol samples by on-line single-particle aerosol time-of-flight mass spectrometry. Environ. Sci. Technol. 40(10):3327–3335. doi:10.1021/es050799k.
  • Forestieri, S. D., T. M. Helgestad, A. T. Lambe, L. Renbaum-Wolff, D. A. Lack, P. Massoli, E. S. Cross, M. K. Dubey, C. Mazzoleni, J. S. Olfert, et al. 2018. Measurement and modeling of the multiwavelength optical properties of uncoated flame-generated soot. Atmos. Chem. Phys. 18(16):12141–12159. doi:10.5194/acp-18-12141-2018.
  • Johansson, K. O., F. El Gabaly, P. E. Schrader, M. F. Campbell, and H. A. Michelsen. 2017. Evolution of maturity levels of the particle surface and bulk during soot growth and oxidation in a flame. Aerosol sci. technol. 51(12):1333–1344. doi:10.1080/02786826.2017.1355047.
  • Hinds, W. C. 1999. Aerosol technology, properties, behaviour, and measurement of airborne particles. New York: John Wiley & Sons, Inc.
  • Kahnert, M. 2010a. Modelling the optical and radiative properties of freshly emitted light absorbing carbon within an atmospheric chemical transport model. Atmos. Chem. Phys 10(3):1403–1416. doi:10.5194/acp-10-1403-2010.
  • Kahnert, M. 2010b. On the discrepancy between modeled and measured mass absorption cross section of light absorbing carbon aerosols. Aerosol Sci. Technol. 44(6):453–460. doi:10.1080/02786821003733834.
  • Kahnert, M., and A. Devasthale. 2011. Black carbon fractal morphology and short-wave radiative impact: A modelling study. Atmos. Chem. Phys. 11(22):11745–11759. doi:10.5194/acp-11-11745-2011.
  • Khalizov, A. K., H. Xue, L. Wang, J. Zheng, and R. Zhang. 2009. Enhanced light absorption and scattering by carbon soot aerosol internally mixed with sulfuric acid. J. Phys. Chem. A 113(6):1066–1074.
  • Liu, L., and M. I. Mishchenko. 2005. Effects of aggregation on scattering and radiative properties of soot aerosols. J. Geophys. Res. 110(D11):D11211.
  • Liu, F., C. Wong, D. R. Snelling, and G. J. Smallwood. 2013. Investigation of absorption and scattering properties of soot aggregates of different fractal dimension at 532 nm using RDG and GMM. Aerosol sci. technol. 47(12):1393–1405. doi:10.1080/02786826.2013.847525.
  • López-Yglesias, X., P. E. Schrader, and H. A. Michelsen. 2014. Soot maturity and absorption cross sections. J. Aero. Sci 75:43–64. doi:10.1016/j.jaerosci.2014.04.011.
  • Mackowski, D. W., and M. I. Mishchenko. 1996. Calculation of the T matrix and the scattering matrix of ensembles of spheres. J. Opt. Soc. Am. A 13(11):2266–2278. doi:10.1364/JOSAA.13.002266.
  • Maricq, M. M. 2014. Examining the relationship between black carbon and soot in flames and engine exhaust. Aerosol sci. technol. 48(6):620–629. doi:10.1080/02786826.2014.904961.
  • Michelsen, H. A., C. Schulz, G. J. Smallwood, and S. Will. 2015. Laser-induced incandescence: Particulate diagnostics for combustion, atmospheric, and industrial applications. Prog. Energy Combust. Sci 51:2–48. doi:10.1016/j.pecs.2015.07.001.
  • Michelsen, H. A. 2017. Probing soot formation, chemical and physical evolution, and oxidation: A review of in situ diagnostic techniques and needs. Proc. Combust. Inst. 36(1):717–735. doi:10.1016/j.proci.2016.08.027.
  • Mishchenko, M. I. 2009. Electromagnetic scattering by nonspherical particles: A tutorial review. J. Quant. Spectrosc. Radiat. Transf. 110(11):808–832. doi:10.1016/j.jqsrt.2008.12.005.
  • Moosmüller, H., and W. P. Arnott. 2009. Particle optics in the rayleigh regime. J Air Waste Manag Assoc 59(9):1028–1031. doi:10.3155/1047-3289.59.9.1028.
  • Moosmüller, H., R. K. Chakrabarty, K. M. Ehlers, and W. P. Arnott. 2011. Absorption ångström coefficient, brown carbon, and aerosols: Basic concepts, bulk matter, and spherical particles. Atmos. Chem. Phys 11(3):1217–1225. doi:10.5194/acp-11-1217-2011.
  • Mullins, J., and A. Williams. 1987. The optical properties of soot: A comparison between experimental and theoretical values. Fuel 66(2):277–280. doi:10.1016/0016-2361(87)90255-9.
  • Park, K., D. B. Kittelson, and P. H. McMurry. 2004. Structural properties of diesel exhaust particles measured by transmission electron microscopy (TEM): Relationships to particle mass and mobility. Aerosol sci. Technol. 38(9):881–889. doi:10.1080/027868290505189.
  • Petzold, A., J. A. Ogren, M. Fiebig, P. Laj, S.-M. Li, U. Baltensperger, T. Holzer-Popp, S. Kinne, G. Pappalardo, N. Sugimoto, C. Wehrli, A. Wiedensohler, and X.-Y. Zhang. 2013. Recommendations for reporting “black carbon” measurements. Atmos. Chem. Phys 13(16):8365–8379. doi:10.5194/acp-13-8365-2013.
  • Radney, J. G., R. You, X. Ma, J. M. Conny, M. R. Zachariah, J. T. Hodges, and C. D. Zangmeister. 2014. Dependence of soot optical properties on particle morphology: measurements and model comparisons. Environ. Sci. Technol. 48(6):3169–3176. doi:10.1021/es4041804.
  • Scarnato, B. V., S. Vahidinia, D. T. Richard, and T. W. Kirchstetter. 2013. Effects of internal mixing and aggregate morphology on optical properties of black carbon using a discrete dipole approximation model. Atmos. Chem. Phys 13(10):5089–5101. doi:10.5194/acp-13-5089-2013.
  • Scarnato, B. V., S. China, K. Nielsen, and C. Mazzoleni. 2015. Perturbations of the optical properties of mineral dust particles by mixing with black carbon: a numerical simulation study. Atmos. Chem. Phys 15(12):6913–6928. doi:10.5194/acp-15-6913-2015.
  • Smith, F. W. 1984. Optical constants of a hydrogenated amorphous carbon film. J. appl. Phys 55(3):764–771. doi:10.1063/1.333135.
  • Smyth, K. C., and C. R. Shaddix. 1996. The elusive history of m∼=1.57 – 0.56i for the refractive index of soot. Combust. Flame 107(3):314–320. doi:10.1016/S0010-2180(96)00170-8.
  • Snelling, D. R., K. A. Thomson, G. J. Smallwood, and Ö. L. Gülder. 1999. Two-dimensional imaging of soot volume fraction in laminar diffusion flames. Appl. Opt. 38(12):2478–2485. doi:10.1364/AO.38.002478.
  • Snelling, D. R., K. A. Thomson, G. J. Smallwood, Ö. L. Gülder, E. J. Weckman, and R. A. Fraser. 2002. Spectrally resolved measurement of flame radiation to determine soot temperature and concentration. AIAA J. 40(9):1789–1795. doi:10.2514/3.15261.
  • Snelling, D. R., F. Liu, G. J. Smallwood, and Ö. L. Gülder. 2004. Determination of the soot absorption function and thermal accommodation coefficient using low-fluence LII in a laminar coflow ethylene diffusion flame. Combust. Flame 136(1/2):180–190. doi:10.1016/j.combustflame.2003.09.013.
  • Snelling, D. R., K. A. Thomson, F. Liu, and G. J. Smallwood. 2009. Comparison of LII derived soot temperature measurements with LII model predictions for soot in a laminar diffusion flame. Appl. Physics B 96(4):657–669. doi:10.1007/s00340-009-3614-9.
  • Snelling, D. R., R. A. Sawchuk, G. J. Smallwood, and K. A. Thomson. 2015. Measurement of soot concentration and bulk fluid temperature and velocity using modulated laser-induced incandescence. Appl. Physics B 119(4):697–707. doi:10.1007/s00340-015-6107-z.
  • Sorensen, C. M. 2001. Light scattering by fractal aggregates: A review. Aerosol Sci. Tech. 35(2):648–687. doi:10.1080/02786820117868.
  • Sorensen, C. M., J. Yon, F. Liu, J. Maughan, W. R. Heinson, and M. J. Berg. 2018. Light scattering and absorption by fractal aggregates including soot. J. Quant Spectrosc. Radiative Transfer 217:459–473. doi:10.1016/j.jqsrt.2018.05.016.
  • Török, S., V. B. Malmborg, J. Simonsson, A. Eriksson, J. Martinsson, M. Mannazhi, J. Pagels, and P.-E. Bengtsson. 2018. Investigation of the absorption ångström exponent and its relation to physicochemical properties for mini-CAST soot. Aerosol sci. technol. 52(7):757–767. doi:10.1080/02786826.2018.1457767.
  • Vander Wal, R. L., V. M. Bryg, and C. H. Huang. 2014. Insights into the combustion chemistry within a gas-turbine driven auxiliary power unit as a function of fuel type and power level using soot nanostructure as a tracer. Fuel 115:282–287. doi:10.1016/j.fuel.2013.07.011.
  • Williams, T. C., C. R. Shaddix, K. A. Jensen, and J. M. Suo-Anttila. 2007. Measurement of the dimensionless extinction coefficient of soot within laminar diffusion flames. Int. J. Heat Mass Transfer 50(7/8):1616–1630. doi:10.1016/j.ijheatmasstransfer.2006.08.024.
  • Wu, J.-S., S. S. Krishnan, and G. M. Faeth. 1997. Refractive indices at visible wavelengths of soot emitted from buoyant turbulent diffusion flames. ASME J. Heat Transf. 119(2):230–237. doi:10.1115/1.2824213.
  • Wu, Y., T. Cheng, L. Zheng, and H. Chen. 2015. A study of optical properties of soot aggregates composed of poly-disperse monomers using the superposition T-matrix method. Aerosol sci. technol. 44:941–949. doi:10.1080/02786826.2015.1083938.
  • Xu, Y.-L. 1995. Electromagnetic scattering by an aggregate of spheres. Appl Opt. 34(21):4573–4588. doi:10.1364/AO.34.004573.
  • Yon, J., C. Rozé, T. Girasole, A. Coppalle, and L. Mees. 2008. Extension of RDG-FA for scattering prediction of aggregates of soot taking into account interactions of large monomers. Part. Part. Syst. Charact 25(1):54–67. doi:10.1002/ppsc.200700011.
  • Yon, J., F. Liu, A. Bescond, C. Caumont-Prim, C. Rozé, F.-X. Ouf, and A. Coppalle. 2014. Effects of multiple scattering on radiative properties of soot fractal aggregates. J. Quant. Spectrosc. Radiat. Transf. 133:374–381. doi:10.1016/j.jqsrt.2013.08.022.
  • Yon, J., A. Bescond, and F. Liu. 2015. On the radiative properties of soot aggregates part 1: Necking and overlapping. J. Quant. Spectrosc. Radiat. Transf. 162:197–206. doi:10.1016/j.jqsrt.2015.03.027.
  • Yon, J., F. Liu, J. Morán, and A. Fuentes. 2019. Impact of the primary particle polydispersity on the radiative properties of soot aggregates. proc. Combustion inst. 37(1):1151–1159. doi:10.1016/j.proci.2018.07.065.
  • Zangmeister, C. D., R. You, E. M. Lunny, A. E. Jacobson, M. Okumura, M. R. Zachariah, J. T. Hodges, and J. G. Radney. 2018. Measured in-situ mass absorption spectra for nine forms of highly-absorbing carbonaceous aerosol. Carbon 136:85–93. doi:10.1016/j.carbon.2018.04.057.
  • Zhang, R., A. F. Khalizov, J. Pagels, D. Zhang, H. Xue, and P. H. McMurry. 2008. Variability in morphology, hydroscopicity, and optical properties of soot aerosols during atmospheric processing. PNAS 105(30):10291–10296. doi:10.1073/pnas.0804860105.
  • Zhu, J., M. Y. Choi, G. W. Mulholland, S. L. Manzello, L. A. Gritzo, and J. Suo-Anttila. 2002. Measurement of visible and near-IR optical properties of soot produced in laminar flames. Proc. Comb. Inst. 29(2):2367–2374. doi:10.1016/S1540-7489(02)80288-7.
  • Zhu, J., A. Irrera, M. Y. Choi, G. W. Mulholland, J. Suo-Anttila, and L. A. Gritzo. 2004. Measurement of light extinction constant of JP-8 soot in the visible and near-infrared spectrum. Int. J. Heat Mass Transf. 47(17/18):3643–3648. doi:10.1016/j.ijheatmasstransfer.2004.04.013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.