1,690
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

New approaches to calculate the transfer function of particle mass analyzers

ORCID Icon, ORCID Icon &
Pages 111-127 | Received 11 Jun 2019, Accepted 08 Oct 2019, Published online: 31 Oct 2019

References

  • Beranek, J., D. Imre, and A. Zelenyuk. 2012. Real-time shape-based particle separation and detailed in situ particle shape characterization. Anal. Chem. 84 (3):1459–65.
  • Berg, H. C. (ed.). 1993. Random walks in biology. In Diffusion: Microscopic theory, 5–16. Princeton: Princeton University Press.
  • Bond, T. C., S. J. Doherty, D. W. Fahey, P. M. Forster, T. Berntsen, B. J. DeAngelo, M. G. Flanner, S. Ghan, B. Kärcher, D. Koch, et al. 2013. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos. 118 (11):5380–552.
  • Broda, K. N., J. S. Olfert, M. Irwin, G. P. Schill, G. R. McMeeking, E. G. Schnitzler, and W. Jäger. 2018. A novel inversion method to determine the mass distribution of non-refractory coatings on refractory black carbon using a centrifugal particle mass analyzer and single particle soot photometer. Aerosol Sci. Technol 52 (5):567–78. doi: 10.1080/02786826.2018.1433812.
  • Charvet, A., S. Bau, N. E. P. Coy, D. Bémer, and D. Thomas. 2014. Characterizing the effective density and primary particle diameter of airborne nanoparticles produced by spark discharge using mobility and mass measurements (tandem DMA/APM). J. Nanoparticle Res. 16 (5):2418–28.
  • Dubey, P., and S. Dhaniyala. 2008. Analysis of scanning DMA transfer functions. Aerosol Sci. Technol. 42 (7):544–55. doi: 10.1080/02786820802220258.
  • Durdina, L., B. T. Brem, M. Abegglen, P. Lobo, T. Rindlisbacher, K. A. Thomson, G. J. Smallwood, D. E. Hagen, B. Sierau, and J. Wang. 2014. Determination of PM mass emissions from an aircraft turbine engine using particle effective density. Atmos. Environ. 99:500–7. doi: 10.1016/j.atmosenv.2014.10.018.
  • Ehara, K., C. Hagwood, and K. J. Coakley. 1996. Novel method to classify aerosol particles according to their mass-to-charge ratio—Aerosol particle mass analyser. J. Aerosol Sci. 27 (2):217–34. doi: 10.1016/0021-8502(95)00562-5.
  • Hagwood, C., K. Coakley, A. Negiz, and K. Ehara. 1995. Stochastic modeling of a new spectrometer. Aerosol Sci. Technol. 23 (4):611–27. doi: 10.1080/02786829508965342.
  • Johnson, T. J., J. S. Olfert, R. Cabot, C. Treacy, C. U. Yurteri, C. Dickens, J. McAughey, and J. P. R. Symonds. 2014. Steady-state measurement of the effective particle density of cigarette smoke. J. Aerosol Sci. 75:9–16. doi: 10.1016/j.jaerosci.2014.04.006.
  • Johnson, T. J., J. P. Symonds, and J. S. Olfert. 2013. Mass–mobility measurements using a centrifugal particle mass analyzer and differential mobility spectrometer. Aerosol Sci. Technol. 47 (11):1215–25. doi: 10.1080/02786826.2013.830692.
  • Knutson, E. O., and K. T. Whitby. 1975. Aerosol classification by electric mobility: Apparatus, theory, and applications. J. Aerosol Sci. 6 (6):443–51. doi: 10.1016/0021-8502(75)90060-9.
  • Kuwata, M. 2015. Particle classification by the tandem differential mobility analyzer–particle mass analyzer system. Aerosol Sci. Technol. 49 (7):508–20. doi: 10.1080/02786826.2015.1045058.
  • Kuwata, M., and Y. Kondo. 2009. Measurements of particle masses of inorganic salt particles for calibration of cloud condensation nuclei counters. Atmos. Chem. Phys. 9 (16):5921–32. doi: 10.5194/acp-9-5921-2009.
  • Lall, A. A., W. Rong, L. Mädler, and S. K. Friedlander. 2008. Nanoparticle aggregate volume determination by electrical mobility analysis: Test of idealized aggregate theory using aerosol particle mass analyzer measurements. J. Aerosol Sci. 39 (5):403–17. doi: 10.1016/j.jaerosci.2007.12.010.
  • Landau, L. D., and E. M. Lifshitz. 1987. Fluid mechanics. 2nd ed. Toronto: Pergamon Press Canada Ltd.
  • McMurry, P. H., X. Wang, K. Park, and K. Ehara. 2002. The relationship between mass and mobility for atmospheric particles: A new technique for measuring particle density. Aerosol Sci. Technol. 36 (2):227–38. doi: 10.1080/027868202753504083.
  • Myhre, G., D. Shindell, F.-M. Bréon, W. Collins, J. Fuglestvedt, J. Huang, D. Koch, J.-F. Lamarque, D. Lee, B. Mendoza, et al. 2013. Anthropogenic and natural radiative forcing. In Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, ed. T. F. Stocker, et al., 659–740 Cambridge: Cambridge University Press.
  • Olfert, J. S., M. Dickau, A. Momenimovahed, M. Saffaripour, K. Thomson, G. Smallwood, M. E. J. Stettler, A. Boies, Y. Sevcenco, A. Crayford, and M. Johnson. 2017. Effective density and volatility of particles sampled from a helicopter gas turbine engine. Aerosol Sci. Technol. 51 (6):704–14. doi: 10.1080/02786826.2017.1292346.
  • Olfert, J. S. 2005. A numerical calculation of the transfer function of the fluted centrifugal particle mass analyzer. Aerosol Sci. Technol. 39 (10):1002–9. doi: 10.1080/02786820500380222.
  • Olfert, J. S., and N. Collings. 2005. New method for particle mass classification—The couette centrifugal particle mass analyzer. J. Aerosol Sci. 36 (11):1338–52. doi: 10.1016/j.jaerosci.2005.03.006.
  • Olfert, J. S., J. P. R. Symonds, and N. Collings. 2007. The effective density and fractal dimension of particles emitted from a light-duty diesel vehicle with a diesel oxidation catalyst. J. Aerosol Sci. 38 (1):69–82. doi: 10.1016/j.jaerosci.2006.10.002.
  • Park, K., F. Cao, D. B. Kittelson, and P. H. McMurry. 2003. Relationship between particle mass and mobility for diesel exhaust particles. Environ. Sci. Technol. 37 (3):577–83. doi: 10.1021/es025960v.
  • Pratsinis, S. E. 1998. Flame aerosol synthesis of ceramic powders. Prog. Energy Combust. Sci. 24 (3):197–219. doi: 10.1016/S0360-1285(97)00028-2.
  • Reavell, K., J. P. R. Symonds, and M. G. Rushton. 2011. Simplified approximations to centrifugal particle mass analyser performance. Poster presented at the European Aerosol Conference, Manchester, UK, September 4.
  • Scheckman, J. H., P. H. McMurry, and S. E. Pratsinis. 2009. Rapid characterization of agglomerate aerosols by in situ mass—Mobility measurements. Langmuir 25 (14):8248–54. doi: 10.1021/la900441e.
  • Schmid, O., E. Karg, D. E. Hagen, P. D. Whitefield, and G. A. Ferron. 2007. On the effective density of non-spherical particles as derived from combined measurements of aerodynamic and mobility equivalent size. J. Aerosol Sci. 38 (4):431–43. doi: 10.1016/j.jaerosci.2007.01.002.
  • Shin, W. G., G. W. Mulholland, S. C. Kim, J. Wang, M. S. Emery, and D. Y. H. Pui. 2009. Friction coefficient and mass of silver agglomerates in the transition regime. J. Aerosol Sci. 40 (7):573–87. doi: 10.1016/j.jaerosci.2009.02.006.
  • Stolzenburg, M. R. 1988. An ultrafine aerosol size distribution measuring system. PhD diss., University of Minnesota.
  • Sipkens, T. A., J. S. Olfert, and S. N. Rogak. 2019. MATLAB tools for PMA transfer function evaluation. doi: 10.5281/zenodo.3513260.
  • Stolzenburg, M. R. 2018. A review of transfer theory and characterization of measured performance for differential mobility analyzers. Aerosol Sci. Technol. 52 (10):1194–218. doi: 10.1080/02786826.2018.1514101.
  • Stolzenburg, M. R., and P. H. McMurry. 2008. Equations governing single and tandem DMA configurations and a new lognormal approximation to the transfer function. Aerosol Sci. Technol. 42 (6):421–32. doi: 10.1080/02786820802157823.
  • Tajima, N., N. Fukushima, K. Ehara, and H. Sakurai. 2011. Mass range and optimized operation of the aerosol particle mass analyzer. Aerosol Sci. Technol. 45 (2):196–214. doi: 10.1080/02786826.2010.530625.
  • Taylor, G. I. 1923. VIII. Stability of a viscous liquid contained between two rotating cylinders. Philos. Trans. R. Soc. London Ser. A. 223 (605-615):289–343. doi: 10.1098/rsta.1923.0008.
  • Thomas, L. H. 1949. Elliptic problems in linear difference equations over a network. New York: Columbia University.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.