2,129
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

A semi-automated multi-endpoint reactive oxygen species activity analyzer (SAMERA) for measuring the oxidative potential of ambient PM2.5 aqueous extracts

ORCID Icon, &
Pages 304-320 | Received 13 Aug 2019, Accepted 06 Nov 2019, Published online: 06 Dec 2019

References

  • Abrams, J. Y., R. J. Weber, M. Klein, S. E. Samat, H. H. Chang, M. J. Strickland, V. Verma, T. Fang, J. T. Bates, J. A. Mulholland, A. G. Russell, and P. E. Tolbert. 2017. Associations between ambient fine particulate oxidative potential and cardiorespiratory emergency department visits. Environ. Health Perspect. 125 (10):107008. doi:10.1289/EHP1545.
  • Alfadda, A. A., and R. M. Sallam. 2012. Reactive oxygen species in health and disease. BioMed Res. Int. 2012:1–14. doi:10.1155/2012/936486.
  • Antiñolo, M., M. D. Willis, S. Zhou, and J. P. Abbatt. 2015. Connecting the oxidation of soot to its redox cycling abilities. Nature Commun. 6 (1):66812. doi:10.1038/ncomms7812.
  • Araujo, J. A., and A. E. Nel. 2009. Particulate matter and atherosclerosis: role of particle size, composition and oxidative stress. Particle Fibre Toxicol. 6 (1):24. doi:10.1186/1743-8977-6-24.
  • Ayres, J. G., P. Borm, F. R. Cassee, V. Castranova, K. Donaldson, A. Ghio, R. M. Harrison, R. Hider, F. Kelly, I. M. Kooter, et al. 2008. Evaluating the toxicity of airborne particulate matter and nanoparticles by measuring oxidative stress potential—a workshop report and consensus statement. Inhal. Toxicol. 20 (1):75–99. doi:10.1080/08958370701665517.
  • Böhmer, A., J. Jordan, and D. Tsikas. 2011. High-performance liquid chromatography ultraviolet assay for human erythrocytic catalase activity by measuring glutathione as o-phthalaldehyde derivative. Anal. Biochem. 410 (2):296–303. doi:10.1016/j.ab.2010.11.026.
  • Baker, M. A., G. J. Cerniglia, and A. Zaman. 1990. Microtiter plate assay for the measurement of glutathione and glutathione disulfide in large numbers of biological samples. Anal. Biochem. 190 (2):360–365. doi:10.1016/0003-2697(90)90208-Q.
  • Bates, J. T., R. J. Weber, J. Abrams, V. Verma, T. Fang, M. Klein, M. J. Strickland, S. E. Sarnat, H. H. Chang, and J. A. Mulholland. 2015. Reactive oxygen species generation linked to sources of atmospheric particulate matter and cardiorespiratory effects. Environmental Sci. Technol. 49 (22):13605–13612. doi:10.1021/acs.est.5b02967.
  • Becker, S., L. A. Dailey, J. M. Soukup, S. C. Grambow, R. B. Devlin, and Y.-C. T. Huang. 2005. Seasonal variations in air pollution particle-induced inflammatory mediator release and oxidative stress. Environ. Health Perspect. 113 (8):1032–1038. doi:10.1289/ehp.7996.
  • Birben, E., U. M. Sahiner, C. Sackesen, S. Erzurum, and O. Kalayci. 2012. Oxidative stress and antioxidant defense. World Allergy Org. J. 5 (1):9. doi:10.1097/WOX.0b013e3182439613.
  • Bonomini, F., S. Tengattini, A. Fabiano, R. Bianchi, and R. Rezzani. 2008. Atherosclerosis and oxidative stress. Histol. Histopathol. 23 (3):381–390. doi:10.14670/HH-23.381.
  • Charrier, J., and C. Anastasio. 2012. On dithiothreitol (DTT) as a measure of oxidative potential for ambient particles: evidence for the importance of soluble transition metals. Atmos. Chem. Phys. 12 (19):9321. doi:10.5194/acp-12-9321-2012.
  • Charrier, J. G., and C. Anastasio. 2015. Rates of hydroxyl radical production from transition metals and quinones in a surrogate lung fluid. Environ. Sci. Technol. 49 (15):9317–9325. doi:10.1021/acs.est.5b01606.
  • Charrier, J. G., A. S. McFall, N. K. Richards-Henderson, and C. Anastasio. 2014. Hydrogen peroxide formation in a surrogate lung fluid by transition metals and quinones present in particulate matter. Environ. Sci. Technol. 48 (12):7010–7017. doi:10.1021/es501011w.
  • Charrier, J., N. Richards-Henderson, K. Bein, A. McFall, A. Wexler, and C. Anastasio. 2015. Oxidant production from source-oriented particulate matter–Part 1: oxidative potential using the dithiothreitol (DTT) assay. Atmos. Chem. Phys. (15):2327–2340. doi:10.5194/acp-15-2327-2015.
  • Charrier, J. G., A. S. McFall, K. K. Vu, J. Baroi, C. Olea, A. Hasson, and C. Anastasio. 2016. A bias in the “mass-normalized” DTT response–an effect of non-linear concentration-response curves for copper and manganese. Atmos. Environ. 144:325–334. doi:10.1016/j.atmosenv.2016.08.071.
  • Cho, A. K., C. Sioutas, A. H. Miguel, Y. Kumagai, D. A. Schmitz, M. Singh, A. Eiguren-Fernandez, and J. R. Froines. 2005. Redox activity of airborne particulate matter at different sites in the Los Angeles Basin. Environ. Res. 99 (1):40–47. doi:10.1016/j.envres.2005.01.003.
  • Chuang, K.-J., C.-C. Chan, T.-C. Su, C.-T. Lee, and C.-S. Tang. 2007. The effect of urban air pollution on inflammation, oxidative stress, coagulation, and autonomic dysfunction in young adults. Am. J. Resp. Crit. Care Med. 176 (4):370–376. doi:10.1164/rccm.200611-1627OC.
  • Cohen, A. J., M. Brauer, R. Burnett, H. R. Anderson, J. Frostad, K. Estep, K. Balakrishnan, B. Brunekreef, L. Dandona, R. Dandona, et al. 2017. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the global burden of diseases study 2015. Lancet 389 (10082):1907–1918. doi:10.1016/S0140-6736(17)30505-6.
  • Crobeddu, B., L. Aragao-Santiago, L.-C. Bui, S. Boland, and A. B. Squiban. 2017. Oxidative potential of particulate matter 2.5 as predictive indicator of cellular stress. Environ. Pollut. 230:125–133. doi:10.1016/j.envpol.2017.06.051.
  • D'Autréaux, B., and M. B. Toledano. 2007. ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat. Rev. Mol. Cell Biol. 8 (10):813. doi:10.1038/nrm2256.
  • Delfino, R. J., N. Staimer, T. Tjoa, D. L. Gillen, J. J. Schauer, and M. M. Shafer. 2013. Airway inflammation and oxidative potential of air pollutant particles in a pediatric asthma panel. J. Exposure Sci. Environ. Epidemiol. 23 (5):466–473. doi:10.1038/jes.2013.25.
  • Fang, T., V. Verma, J. T. Bates, J. Abrams, M. Klein, M. J. Strickland, S. E. Sarnat, H. H. Chang, J. A. Mulholland, P. E. Tolbert, et al. 2016. Oxidative potential of ambient water-soluble PM 2.5 in the southeastern United States: contrasts in sources and health associations between ascorbic acid (AA) and dithiothreitol (DTT) assays. Atmos. Chem. Phys. 16 (6):3865–3879. doi:10.5194/acp-16-3865-2016.
  • Fang, T., V. Verma, H. Guo, L. King, E. Edgerton, and R. Weber. 2014. A semi-automated system for quantifying the oxidative potential of ambient particles in aqueous extracts using the dithiothreitol (DTT) assay: results from the Southeastern Center for Air Pollution and Epidemiology (SCAPE). Atmos. Meas. Tech. Discussions 7 (7):7245. doi:10.5194/amt-8-471-2015.
  • Feng, S., D. Gao, F. Liao, F. Zhou, and X. Wang. 2016. The health effects of ambient PM2.5 and potential mechanisms. Ecotoxicol. Environ. Safety 128 :67–74. doi:10.1016/j.ecoenv.2016.01.030.
  • Godri, K. J., R. M. Harrison, T. Evans, T. Baker, C. Dunster, I. S. Mudway, and F. J. Kelly. 2011. Increased oxidative burden associated with traffic component of ambient particulate matter at roadside and urban background schools sites in London. PLoS One 6 (7):e21961. doi:10.1371/journal.pone.0021961.
  • Held, K. D., F. C. Sylvester, K. L. Hopcia, and J. E. Biaglow. 1996. Role of Fenton chemistry in thiol-induced toxicity and apoptosis. Radiation Res. 145 (5):542–553. doi:10.2307/3579272.
  • Hu, S., A. Polidori, M. Arhami, M. Shafer, J. Schauer, A. Cho, and C. Sioutas. 2008. Redox activity and chemical speciation of size fractioned PM in the communities of the Los Angeles-Long Beach harbor. Atmos. Chem. Phys. 8 (21):6439–6451. doi:10.5194/acp-8-6439-2008.
  • Hulskotte, J., H. Denier van der Gon, A. Visschedijk, and M. Schaap. 2007. Brake wear from vehicles as an important source of diffuse copper pollution. Water Sci. Technol. 56 (1):223–231. doi:10.2166/wst.2007.456.
  • Janssen, N. A., M. Strak, A. Yang, B. Hellack, F. J. Kelly, T. A. Kuhlbusch, R. M. Harrison, B. Brunekreef, F. R. Cassee, and M. Steenhof. 2015. Associations between three specific a-cellular measures of the oxidative potential of particulate matter and markers of acute airway and nasal inflammation in healthy volunteers. Occupational Environ. Med. 72 (1):49–56. doi:10.1136/oemed-2014-102303.
  • Janssen, N. A. H., A. Yang, M. Strak, M. Steenhof, B. Hellack, M. E. Gerlofs-Nijland, T. Kuhlbusch, F. Kelly, R. Harrison, B. Brunekreef, et al. 2014. Oxidative potential of particulate matter collected at sites with different source characteristics. Sci. Total Environ. 472 :572–581. doi:10.1016/j.scitotenv.2013.11.099.
  • Künzli, N., I. S. Mudway, T. Götschi, T. Shi, F. J. Kelly, S. Cook, P. Burney, B. Forsberg, J. W. Gauderman, M. E. Hazenkamp, et al. 2006. Comparison of oxidative properties, light absorbance, and total and elemental mass concentration of ambient PM2. 5 collected at 20 European sites. Environ. Health Perspect. 114 (5):684–690. doi:10.1289/ehp.8584.
  • Kampa, M., and E. Castanas. 2008. Human health effects of air pollution. Environ. Pollut. 151 (2):362–367. doi:10.1016/j.envpol.2007.06.012.
  • Knaapen, A. M., P. J. Borm, C. Albrecht, and R. P. Schins. 2004. Inhaled particles and lung cancer. Part A: Mechanisms. Int. J. Cancer 109 (6):799–809. doi:10.1002/ijc.11708.
  • Kodavanti, U. P., M. C. Schladweiler, A. D. Ledbetter, W. P. Watkinson, M. J. Campen, D. W. Winsett, J. R. Richards, K. M. Crissman, G. E. Hatch, and D. L. Costa. 2000. The spontaneously hypertensive rat as a model of human cardiovascular disease: evidence of exacerbated cardiopulmonary injury and oxidative stress from inhaled emission particulate matter. Toxicol. Appl. Pharmacol. 164 (3):250–263. doi:10.1006/taap.2000.8899.
  • Li, N., C. Sioutas, A. Cho, D. Schmitz, C. Misra, J. Sempf, M. Wang, T. Oberley, J. Froines, and A. Nel. 2003. Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ. Health Perspect. 111 (4):455. doi:10.1289/ehp.6000.
  • Li, N., T. Xia, and A. E. Nel. 2008. The role of oxidative stress in ambient particulate matter-induced lung diseases and its implications in the toxicity of engineered nanoparticles. Free Radical Biol. Med. 44 (9):1689–1699. doi:10.1016/j.freeradbiomed.2008.01.028.
  • Longhin, E., J. A. Holme, K. B. Gutzkow, V. M. Arlt, J. E. Kucab, M. Camatini, and M. Gualtieri. 2013. Cell cycle alterations induced by urban PM2. 5 in bronchial epithelial cells: characterization of the process and possible mechanisms involved. Particle Fibre Toxicol. 10 (1):63. doi:10.1186/1743-8977-10-63.
  • Ma, S., K. Ren, X. Liu, L. Chen, M. Li, X. Li, J. Yang, B. Huang, M. Zheng, and Z. Xu. 2015. Production of hydroxyl radicals from Fe-containing fine particles in Guangzhou, China. Atmos. Environ. 123:72–78. doi:10.1016/j.atmosenv.2015.10.057.
  • Maikawa, C. L., S. Weichenthal, A. J. Wheeler, N. A. Dobbin, A. Smargiassi, G. Evans, L. Liu, M. S. Goldberg, and K. J. G. Pollitt. 2016. Particulate oxidative burden as a predictor of exhaled nitric oxide in children with asthma. Environ. Health Perspect. 124 (10):1616. doi:10.1289/EHP175.
  • Mudway, I. S., S. T. Duggan, C. Venkataraman, G. Habib, F. J. Kelly, and J. Grigg. 2005. Combustion of dried animal dung as biofuel results in the generation of highly redox active fine particulates. Particle Fibre Toxicol. 2 (1):6. doi:10.1186/1743-8977-2-6.
  • Mudway, I. S., N. Stenfors, A. Blomberg, R. Helleday, C. Dunster, S. Marklund, A. J. Frew, T. Sandström, and F. J. Kelly. 2001. Differences in basal airway antioxidant concentrations are not predictive of individual responsiveness to ozone: a comparison of healthy and mild asthmatic subjects. Free Radical Biol. Med. 31 (8):962–974. doi:10.1016/S0891-5849(01)00671-2.
  • Oh, S. M., H. R. Kim, Y. J. Park, S. Y. Lee, and K. H. Chung. 2011. Organic extracts of urban air pollution particulate matter (PM2. 5)-induced genotoxicity and oxidative stress in human lung bronchial epithelial cells (BEAS-2B cells). Mutation Res./Genetic Toxicol. Environ. Mutagenesis 723 (2):142–151. doi:10.1016/j.mrgentox.2011.04.003.
  • Pervez, S., R. K. Chakrabarty, S. Dewangan, J. G. Watson, J. C. Chow, and J. L. Matawle. 2016. Chemical speciation of aerosols and air quality degradation during the festival of lights (Diwali). Atmos.c Pollution Res. 7 (1):92–99. doi:10.1016/j.apr.2015.09.002.
  • Pham-Huy, L. A. H., He, and C. Pham-Huy. 2008. Free radicals, antioxidants in disease and health. Int. J. Biomed. Sci. 4 (2):89.
  • Pietrogrande, M. C., I. Bertoli, F. Manarini, and M. Russo. 2019. Ascorbate assay as a measure of oxidative potential for ambient particles: Evidence for the importance of cell-free surrogate lung fluid composition. Atmos. Environ. 211 (2019):103–112. doi:10.1016/j.atmosenv.2019.05.012.
  • Puthussery, J. V. C., Zhang, and V. Verma. 2018. Development and field testing of an online instrument for measuring the real-time oxidative potential of ambient particulate matter based on dithiothreitol assay. Atmos. Meas. Tech. 11 (10):5767–5780. doi:10.5194/amt-11-5767-2018.
  • Rahman, T., I. Hosen, M. T. Islam, and H. U. Shekhar. 2012. Oxidative stress and human health. Adv. Biosci. Biotechnol. 3 (7):997. doi:10.4236/abb.2012.327123.
  • Roušar, T., O. Kučera, H. Lotková, and Z. Červinková. 2012. Assessment of reduced glutathione: comparison of an optimized fluorometric assay with enzymatic recycling method. Anal. Biochem. 423 (2):236–240. doi:10.1016/j.ab.2012.01.030.
  • Saffari, A., N. Daher, M. M. Shafer, J. J. Schauer, and C. Sioutas. 2014. Seasonal and spatial variation in dithiothreitol (DTT) activity of quasi-ultrafine particles in the Los Angeles Basin and its association with chemical species. J. Environ. Sci. Health, Part A 49 (4):441–451. doi:10.1080/10934529.2014.854677.
  • Sarnat, S. E., H. H. Chang, and R. J. Weber. 2016. Ambient PM2. 5 and health: does PM2. 5 oxidative potential play a role? Am. J. Respir. Crit. Care Med. (194):530–531. doi:10.1164/rccm.201603-0589ED.
  • Sauvain, J.-J., S. Deslarzes, F. Storti, and M. Riediker. 2015. Oxidative potential of particles in different occupational environments: a pilot study. Ann. Occupational Hygiene 59 (7):882–894. doi:10.1093/annhyg/mev024.
  • Shen, H. A., Barakat, and C. Anastasio. 2011. Generation of hydrogen peroxide from San Joaquin Valley particles in a cell-free solution. Atmos. Chem. Phys. 11 (2):753–765. doi:10.5194/acp-11-753-2011.
  • Son, Y., V. Mishin, W. Welsh, S.-E. Lu, J. D. Laskin, H. Kipen, and Q. Meng. 2015. A novel high-throughput approach to measure hydroxyl radicals induced by airborne particulate matter. Int. J. Environ. Res. Public Health 12 (11):13678–13695. doi:10.3390/ijerph121113678.
  • Sun, Q., A. Wang, X. Jin, A. Natanzon, D. Duquaine, R. D. Brook, J.-G. S. Aguinaldo, Z. A. Fayad, V. Fuster, and M. Lippmann. 2005. Long-term air pollution exposure and acceleration of atherosclerosis and vascular inflammation in an animal model. JAMA 294 (23):3003–3010. doi:10.1001/jama.294.23.3003.
  • Szigeti, T., C. Dunster, A. Cattaneo, D. Cavallo, A. Spinazzè, D. E. Saraga, I. A. Sakellaris, Y. de Kluizenaar, E. J. Cornelissen, and O. Hänninen. 2016. Oxidative potential and chemical composition of PM2.5 in office buildings across Europe–the OFFICAIR study. Environ. Int. 92:324–333. doi:10.1016/j.envint.2016.04.015.
  • Torres-Ramos, Y. D., A. Montoya-Estrada, A. M. Guzman-Grenfell, J. Mancilla-Ramirez, B. Cardenas-Gonzalez, S. Blanco-Jimenez, J. D. Sepulveda-Sanchez, A. Ramirez-Venegas, and J. J. Hicks. 2011. Urban PM2.5 induces ROS generation and RBC damage in COPD patients. Frontiers Biosci. (Elite Edition) 3 E (3):808–817. doi:10.2741/e288.
  • Verma, V., T. Fang, H. Guo, L. King, J. Bates, R. Peltier, E. Edgerton, A. Russell, and R. Weber. 2014. Reactive oxygen species associated with water-soluble PM 2.5 in the southeastern United States: spatiotemporal trends and source apportionment. Atmos. Chem. Phys. (14):12915–12930. doi:10.5194/acp-14-12915-2014.
  • Verma, V., T. Fang, L. Xu, R. E. Peltier, A. G. Russell, N. L. Ng, and R. J. Weber. 2015a. Organic aerosols associated with the generation of reactive oxygen species (ROS) by water-soluble PM2. 5. Environ. Sci. Technol. 49 (7):4646–4656. doi:10.1021/es505577w.
  • Verma, V., Z. Ning, A. K. Cho, J. J. Schauer, M. M. Shafer, and C. Sioutas. 2009. Redox activity of urban quasi-ultrafine particles from primary and secondary sources. Atmos. Environ. 43 (40):6360–6368. doi:10.1016/j.atmosenv.2009.09.019.
  • Verma, V., R. Rico-Martinez, N. Kotra, L. King, J. Liu, T. W. Snell, and R. J. Weber. 2012. Contribution of water-soluble and insoluble components and their hydrophobic/hydrophilic subfractions to the reactive oxygen species-generating potential of fine ambient aerosols. Environ. Sci. Technol. 46 (20):11384–11392. doi:10.1021/es302484r.
  • Verma, V., Y. Wang, R. El-Afifi, T. Fang, J. Rowland, A. G. Russell, and R. J. Weber. 2015b. Fractionating ambient humic-like substances (HULIS) for their reactive oxygen species activity–assessing the importance of quinones and atmospheric aging. Atmos. Environ. 120:351–359. doi:10.1016/j.atmosenv.2015.09.010.
  • Vidrio, E., H. Jung, and C. Anastasio. 2008. Generation of hydroxyl radicals from dissolved transition metals in surrogate lung fluid solutions. Atmos. Environ. 42 (18):4369–4379. doi:10.1016/j.atmosenv.2008.01.004.
  • Vidrio, E., C. H. Phuah, A. M. Dillner, and C. Anastasio. 2009. Generation of hydroxyl radicals from ambient fine particles in a surrogate lung fluid solution. Environ. Sci. Technol. 43 (3):922–927. doi:10.1021/es801653u.
  • Visentin, M., A. Pagnoni, E. Sarti, and M. C. Pietrogrande. 2016. Urban PM2. 5 oxidative potential: Importance of chemical species and comparison of two spectrophotometric cell-free assays. Environ. Pollut. 219:72–79. doi:10.1016/j.envpol.2016.09.047.
  • Wang, Y., M. J. Plewa, U. K. Mukherjee, and V. Verma. 2018. Assessing the cytotoxicity of ambient particulate matter (PM) using Chinese hamster ovary (CHO) cells and its relationship with the PM chemical composition and oxidative potential. Atmos. Environ. 179:132–141. doi:10.1016/j.atmosenv.2018.02.025.
  • Weichenthal, S., E. Lavigne, G. Evans, K. Pollitt, and R. T. Burnett. 2016. Ambient PM2.5 and risk of emergency room visits for myocardial infarction: impact of regional PM2.5 oxidative potential: a case-crossover study. Environ. Health 15 (1):46. doi:10.1186/s12940-016-0129-9.
  • West, J. J., A. Cohen, F. Dentener, B. Brunekreef, T. Zhu, B. Armstrong, M. L. Bell, M. Brauer, G. Carmichael, and D. L. Costa. 2016. What we breathe impacts our health: improving understanding of the link between air pollution and health. Environ. Sci. Technol. 50 (10):4895–4904. doi:10.1021/acs.est.5b03827.
  • Xiong, Q., H. Yu, R. Wang, J. Wei, and V. Verma. 2017. Rethinking the dithiothreitol (DTT) based PM oxidative potential: Measuring DTT consumption versus ROS generation. Environ. Sci. Technol. 51 (11):6507–6514. doi:10.1021/acs.est.7b01272.
  • Yan, Z., J. Wang, J. Li, N. Jiang, R. Zhang, W. Yang, W. Yao, and W. Wu. 2016. Oxidative stress and endocytosis are involved in upregulation of interleukin‐8 expression in airway cells exposed to PM 2.5. Environ. Toxicol. 31 (12):1869–1878. doi:10.1002/tox.22188.
  • Yang, A., N. A. Janssen, B. Brunekreef, F. R. Cassee, G. Hoek, and U. Gehring. 2016. Children's respiratory health and oxidative potential of PM2.5: the PIAMA birth cohort study. Occupational Environ. Med. 73 (3):154–160. doi:10.1136/oemed-2015-103175.
  • Yu, H., J. Wei, Y. Cheng, K. Subedi, and V. Verma. 2018. Synergistic and antagonistic interactions among the particulate matter components in generating reactive oxygen species based on the dithiothreitol assay. Environ. Sci. Technol. 52 (4):2261–2270. doi:10.1021/acs.est.7b04261.
  • Zhang, X., N. Staimer, D. L. Gillen, T. Tjoa, J. J. Schauer, M. M. Shafer, S. Hasheminassab, P. Pakbin, N. D. Vaziri, C. Sioutas, and R. J. Delfino. 2016. Associations of oxidative stress and inflammatory biomarkers with chemically-characterized air pollutant exposures in an elderly cohort. Environ. Res. 150:306–319. doi:10.1016/j.envres.2016.06.019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.