4,803
Views
16
CrossRef citations to date
0
Altmetric
Review Articles

Laboratory study of bioaerosols: Traditional test systems, modern approaches, and environmental control

, &
Pages 585-600 | Received 08 Jul 2019, Accepted 08 Nov 2019, Published online: 09 Dec 2019

References

  • Kolberg, D., F. Schubert, N. Lontke, A. Zwigart, and D. M. Spinner. 2011. Development of tunable close match LED solar simulator with extended spectral range to UV and IR. Energy Proc. 8:100–5. doi:10.1016/j.egypro.2011.06.109.
  • Allegra, S., L. Leclerc, P. A. Massard, F. Girardot, S. Riffard, and J. Pourchez. 2016. Characterization of aerosols containing legionella generated upon nebulization. Sci. Rep. 6:33998. doi:10.1038/srep33998.
  • Antonietti, C. G. 2014. Development of the captive aerosol growth and evolution chamber system. Master's thesis, Texas A&M University. Available electronically from http://hdl.handle.net/1969.1/153855.
  • Asgharian, B., and O. R. Moss. 1992. Particle suspension in a rotating drum chamber when the influence of gravity and rotation are both significant. Aerosol. Sci. Technol. 17 (4):263–77. doi:10.1080/02786829208959575.
  • ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.). (2013). Standard 62.1-2013 ventilation for acceptable indoor air quality. Atlanta, GA: American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.
  • ASTM International. (2012a). Standard tables for reference solar spectral irradiances: Direct normal and hemispherical on 37° tilted surface. ASTM G173-03. West Conshohocken, PA: ASTM International. doi:10.1520/G0173-03R12.
  • ASTM International. (2012b). Standard tables for reference solar ultraviolet spectral distributions: Hemispherical on 37° tilted surface. ASTM G177-03. West Conshohocken, PA: ASTM International. doi:10.1520/G0177-03R12.
  • Beebe, J. M., and G. W. Pirsch. 1958. Response of air-borne species of pasteurella to artificial radiation simulating sunlight under different conditions of relative humidity. Appl. Microbiol. 6 (2):127.
  • Berger, D. S. 1969. Specification and design of solar ultraviolet simulators. J. Invest. Dermatol. 53 (3):192–9. doi:10.1038/jid.1969.133.
  • Blocquet, M., F. Guo, M. Mendez, M. Ward, S. Coudert, S. Batut, C. Hecquet, N. Blond, C. Fittschen, and C. Schoemaecker. 2018. Impact of the spectral and spatial properties of natural light on indoor gas‐phase chemistry: Experimental and modeling study. Indoor Air 28 (3):426–40. doi:10.1111/ina.12450.
  • Bogan, M. J., and G. R. Agnes. 2004. Wall-less sample preparation of mu m-sized sample spots for femtomole detection limits of proteins from liquid based UV-MALDI matrices. J. Am. Soc. Mass Spectrosc. 15 (4):486–95. doi:10.1016/j.jasms.2003.11.012.
  • Brown, A. D. 1954. The survival of airborne microorganisms III. Effects of temperature. Aust. J. Biol. Sci. 7 (4):444–51. doi:10.1071/BI9540444.
  • Carter, W. P. L., D. R. Cocker, D. R. Fitz, I. L. Malkina, K. Bumiller, C. G. Sauer, J. T. Pisano, C. Bufalino, and C. Song. 2005. A new environmental chamber for evaluation of gas-phase chemical mechanisms and secondary aerosol formation. Atmos. Environ. 39 (40):7768–88. doi:10.1016/j.atmosenv.2005.08.040.
  • Christopher, L. G. W., L. T. J. Cieslak, J. A. Pavlin, and E. M. Eitzen. 1997. Biological warfare: A historical perspective. JAMA. 278 (5):412–17. doi:10.1001/jama.278.5.412.
  • Cocker, D. R., R. C. Flagan, and J. H. Seinfeld. 2001. State-of-theart chamber facility for studying atmospheric aerosol chemistry. Environ. Sci. Technol. 35 (12):2594–601. doi:10.1021/es0019169.
  • Codd, D. S., A. Carlson, J. Rees, and A. H. Slocum. 2010. A low cost high flux solar simulator. Solar Energy 84 (12):2202–12. doi:10.1016/j.solener.2010.08.007.
  • Cox, C. S. 1987. The aerobiological pathway of microorganisms. Chichester: Wiley.
  • Cox, C. S., and L. J. Goldberg. 1972. Aerosol survival of Pasteurella tularensis and the influence of relative humidity. Appl. Environ. Microbiol. 23 (1):1–3.
  • Dark, F. A., and T. Nash. 1970. Comparative toxicity of various ozonized olefins to bacteria suspended in air. J. Hyg. 68 (2):245–52. doi:10.1017/S0022172400028710.
  • Davies, J. F., A. E. Haddrell, and J. P. Reid. 2012. Time-resolved measurements of the evaporation of volatile components from single aerosol droplets. Aerosol. Sci. Tech. 46 (6):666–77. doi:10.1080/02786826.2011.652750.
  • Davis, E. J., M. F. Buehler, and T. L. Ward. 1990. The double-ring electrodynamic balance for microparticle characterization. Rev. Sci. Instrum. 61 (4):1281–8. doi:10.1063/1.1141227.
  • Després, V. R., J. A. Huffman, S. M. Burrows, C. Hoose, A. S. Safatov, G. Buryak, J. Fröhlich-Nowoisky, W. Elbert, M. O. Andreae, et al. 2012. Primary biological aerosol particles in the atmosphere: A review. Tellus B: Chem. Phys. Meteorol. 64 (1):15598. doi:10.3402/tellusb.v64i0.15598.
  • Diffey, B. L. 2002. Sources and measurement of ultraviolet radiation. Methods 28 (1):4–13. doi:10.1016/S1046-2023(02)00204-9.
  • Donahue, N. M., K. M. Henry, T. F. Mentel, A. Kiendler-Scharr, C. Spindler, B. Bohn, T. Brauers, H. P. Dorn, H. Fuchs, R. Tillmann, et al. 2012. Aging of biogenic secondary organic aerosol via gas-phase OH radical reactions. Proc. Natl. Acad. Sci. 109 (34):13503–8. doi:10.1073/pnas.1115186109.
  • Donaldson, A. I. 1972. The influence of relative humidity on the aerosol stability of different strains of foot-and-mouth disease virus suspended in saliva. J. Gen. Virol. 15 (1):25–33. doi:10.1099/0022-1317-15-1-25.
  • Druett, H. A. 1971. A safe method of exposing microthreads in the open air. J. Appl. Bacteriol. 34 (3):655–8. doi:10.1111/j.1365-2672.1971.tb02328.x.
  • Dybwad, M., and G. Skogan. 2017. Aerobiological stabilities of different species of gram-negative bacteria, including well-known biothreat simulants, in single-cell particles and cell clusters of different compositions. Appl. Environ. Microbiol. 83 (18):e00823–17. doi:10.1128/AEM.00823-17.
  • Ehrlich, R., S. Miller, and R. L. Walker. 1970. Relationship between atmospheric temperature and survival of airborne bacteria. Appl. Environ. Microbiol. 19 (2):245–9.
  • Emanuel, P. A., P. E. Buckley, T. A. Sutton, J. M. Edmonds, A. M. Bailey, B. A. Rivers, M. H. Kim, W. J. Ginley, C. C. Keiser, R. W. Doherty, et al. 2012. Detection and tracking of a novel genetically tagged biological simulant in the environment. Appl. Environ. Microbiol. 78 (23):8281–8. doi:10.1128/AEM.01827-12.
  • Esen, V., Ş. Sağlam, and B. Oral. 2017. Light sources of solar simulators for photovoltaic devices: A review. Renewable Sustainable Energy Rev. 77:1240–50. doi:10.1016/j.rser.2017.03.062.
  • Fan, L., J. Song, P. D. Hildebrand, and C. F. Forney. 2002. Interaction of ozone and negative air ions to control micro-organisms. J. Appl. Microbiol. 93 (1):144–8. doi:10.1046/j.1365-2672.2002.01683.x.
  • Fernandez, M. O., R. J. Thomas, N. J. Garton, A. Hudson, A. Haddrell, and J. P. Reid. 2019. Assessing the airborne survival of bacteria in populations of aerosol droplets with a novel technology. J. R. Soc. Interface 16:20180779.
  • Fernstrom, A., and M. Goldblatt. 2013. Aerobiology and its role in the transmission of infectious diseases. J. Pathog. 2013:1. doi:10.1155/2013/493960.
  • Frohlich-Nowoisky, J., C. J. Kampf, B. Weber, J. A. Huffman, C. Pohlker, M. O. Andreae, N. Lang-Yona, S. M. Burrows, S. S. Gunthe, W. Elbert, H. Su, P. Hoor, E. Thines, T. Hoffmann, V. R. Despres, and U. Poschl. 2016. Bioaerosols in the earth system: Climate, health, and ecosystem interactions. Atmos. Res. 182:346–76. doi:10.1016/j.atmosres.2016.07.018.
  • Fujimori, E. 1985. Changes induced by ozone and ultraviolet light in type I collagen bovine achilles tendon collagen versus rat tail tendon collagen. Eur. J. Biochem. 152 (2):299–306. doi:10.1111/j.1432-1033.1985.tb09198.x.
  • Gahagan, K. T., and G. A. Swartzlander. 1996. Optical vortex trapping of particles. Opt. Lett. 21 (11):827–9. doi:10.1364/OL.21.000827.
  • Goldberg, L. J., H. M. S. Watkins, E. E. Boerke, and M. A. Chatigny. 1958. The use of a rotating drum for the. Study of aerosols over extended periods of time. Am. J. Hyg. 68 (1):85–93. doi:10.1093/oxfordjournals.aje.a119954.
  • Gong, Z. Y., Y. L. Pan, G. Videen, and C. J. Wang. 2018. Optical trapping-Raman spectroscopy (OT-RS) with embedded microscopy imaging for concurrent characterization and monitoring of physical and chemical properties of single particles. Anal. Chim. Acta 1020:86–94. doi:10.1016/j.aca.2018.02.062.
  • Griffiths, W. D., I. W. Stewart, S. J. Futter, S. L. Upton, and D. Mark. 1997. The development of sampling methods for the assessment of indoor bioaerosols. J. Aerosol. Sci. 28 (3):437–57. doi:10.1016/S0021-8502(96)00446-6.
  • Gruel, R. L., C. R. Reid, and R. T. Allemann. 1987. The optimum rate of drum rotation for aerosol aging. J. Aerosol. Sci. 18 (1):17–22. doi:10.1016/0021-8502(87)90004-8.
  • Guedes, A., H. Ribeiro, M. Fernandez-Gonzalez, M. J. Aira, and I. Abreu. 2014. Pollen raman spectra database: Application to the identification of airborne pollen. Talanta 119:473–8. doi:10.1016/j.talanta.2013.11.046.
  • Haddrell, A. E., and R. J. Thomas. 2017. Aerobiology: Experimental considerations, observations, and future tools. Appl. Environ. Microbiol. 83 (17):e00809–17. doi:10.1128/AEM.00809-17.
  • Haddrell, A. E., G. Hargreaves, J. F. Davies, and J. P. Reid. 2013. Control over hygroscopic growth of saline aqueous aerosol using pluronic polymer additives. Int. J. Pharm. 443 (1–2):183–92. doi:10.1016/j.ijpharm.2012.12.039.
  • Haddrell, A. E., J. F. Davies, R. E. H. Miles, J. P. Reid, L. A. Dailey, and D. Murnane. 2014. Dynamics of aerosol size during inhalation: Hygroscopic growth of commercial nebulizer formulations. Int. J. Pharm. 463 (1):50–61. doi:10.1016/j.ijpharm.2013.12.048.
  • Haddrell, A. E., R. E. Miles, B. R. Bzdek, J. P. Reid, R. J. Hopkins, and J. S. Walker. 2017. Coalescence sampling and analysis of aerosols using aerosol optical tweezers. Anal. Chem. 89 (4):2345–52. doi:10.1021/acs.analchem.6b03979.
  • Hairston, P. P., J. Ho, and F. R. Quant. 1997. Design of an instrument for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence. J. Aerosol. Sci. 28 (3):471–82. doi:10.1016/S0021-8502(96)00448-X.
  • Hambleton, P., M. G. Broster, P. J. Dennis, R. Henstridge, R. Fitzgeorge, and J. W. Conlan. 1983. Survival of virulent Legionella pneumophila in aerosols. Epidemiol. Infect. 90 (3):451–60. doi:10.1017/S0022172400029090.
  • Handley, B. A., and J. M. Roe. 1994. An alternative microthread for the study of airborne survival of bacteria outdoors. J. Appl. Bacteriol. 77 (5):504–8. doi:10.1111/j.1365-2672.1994.tb04394.x.
  • Hatch, M. T., and R. L. Dimmick. 1966. Physiological responses of airborne bacteria to shifts in relative humidity. Bacteriol. Rev. 30 (3):597.
  • Healy, D. A., D. J. O'Connor, A. M. Burke, and J. R. Sodeau. 2012. A laboratory assessment of the waveband integrated bioaerosol sensor (WIBS-4) using individual samples of pollen and fungal spore material. Atmos. Environ. 60:534–43. doi:10.1016/j.atmosenv.2012.06.052.
  • Hermann, J., S. Hoff, C. Muñoz-Zanzi, K. J. Yoon, M. Roof, A. Burkhardt, and J. Zimmerman. 2007. Effect of temperature and relative humidity on the stability of infectious porcine reproductive and respiratory syndrome virus in aerosols. Vet. Res. 38 (1):81–93. doi:10.1051/vetres:2006044.
  • Hinds, W. C. 1999. Aerosol technology: Properties, behavior, and measurement of airborne particles. New York: John Wiley & Sons.
  • Hopkins, R. J., L. Mitchem, A. D. Ward, and J. P. Reid. 2004. Control and characterisation of a single aerosol droplet in a single-beam gradient-force optical trap. Phys. Chem. Chem. Phys. 6 (21):4924–27. doi:10.1039/b414459g.
  • Huffman, J. A., and J. Santarpia. 2017. Online techniques for quantification and characterization of biological aerosols. In Microbiology of aerosols, ed. Anne-Marie Delort and Pierre Amato, New York: John Wiley & Sons, Inc.
  • Humphreys, M. A. 1981. The dependence of comfortable temperatures upon indoor and outdoor climates. In Studies in environmental science. ed. K. Cena and J. A. Clark, Vol. 10, 229–50. Elsevier.
  • Ignatenko, A. V. 1988. Use of the method of tryptophan fluorescence to characterize disruptions of the structure of ozonized proteins. J. Appl. Spectrosc. 49 (1):691–5. doi:10.1007/BF00662905.
  • Ignatenko, A. V., B. A. Tatarinov, N. N. Khovratovich, V. P. Khrapovitskii, and S. N. Cherenkevich. 1982. Spectral-fluorescent investigation of the action of ozone on aromatic amino acids. J. Appl. Spectrosc. 37 (1):781–4. doi:10.1007/BF00663829.
  • Ijaz, M. K., S. A. Sattar, C. M. Johnson-Lussenburg, V. S. Springthorpe, and R. C. Nair. 1985. Effect of relative humidity, atmospheric temperature, and suspending medium on the airborne survival of human rotavirus. Can. J. Microbiol. 31 (8):681–5. doi:10.1139/m85-129.
  • IPCC. 2013. Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK.
  • Johnson, D. L. 1999. The effect of phosphate buffer on aerosol size distribution of nebulized Bacillus subtilis and Pseudomonas fluorescens bacteria. Aerosol Sci. Technol. 30 (2):202–10. doi:10.1080/027868299304787.
  • Jonsson, P., G. R Olofsson, and T. R Tjärnhage. 2014. Bioaerosol detection technologies. New York: Springer.
  • Kesavan, J., and E. Stuebing. 2009. Aerosol sampling efficiency evaluation methods at the US Army Edgewood chemical biological center. In Atmospheric and biological environmental monitoring, 83–103. Dordrecht: Springer.
  • Kesavan, J., D. Schepers, J. Bottiger, and J. Edmonds. 2014. UV-C decontamination of aerosolized and surface-bound single spores and bioclusters. Aerosol Sci. Technol. 48 (4):450–7. doi:10.1080/02786826.2014.889276.
  • Kim, J. G., and A. E. Yousef. 2000. Inactivation kinetics of foodborne spoilage and pathogenic bacteria by ozone. J. Food Sci. 65 (3):521–8. doi:10.1111/j.1365-2621.2000.tb16040.x.
  • Kim, K. H., E. Kabir, and S. A. Jahan. 2018. Airborne bioaerosols and their impact on human health. J. Environ. Sci. 67:23–35. doi:10.1016/j.jes.2017.08.027.
  • Kinahan, S. M., M. S. Tezak, C. M. Siegrist, G. Lucero, B. L. Servantes, J. L. Santarpia, … Y. L. Pan. 2019. Changes of fluorescence spectra and viability from aging aerosolized E. coli cells under various laboratory-controlled conditions in an advanced rotating drum. Aerosol. Sci. Technol. 53:1–16. doi:10.1080/02786826.2019.1653446.
  • King, M. D., and A. R. McFarland. 2012a. Bioaerosol sampling with a wetted wall cyclone: Cell culturability and DNA integrity of Escherichia coli bacteria. Aerosol Sci. Technol. 46 (1):82–93. doi:10.1080/02786826.2011.605400.
  • King, M. D., and A. R. McFarland. 2012b. Use of an andersen bioaerosol sampler to simultaneously provide culturable particle and culturable organism size distributions. Aerosol. Sci. Technol. 46 (8):852–61. doi:10.1080/02786826.2012.669507.
  • Ko, G., M. W. First, and H. A. Burge. 2000. Influence of relative humidity on particle size and UV sensitivity of Serratia marcescens and Mycobacterium bovis BCG aerosols. Tubercle Lung Dis. 80 (4–5):217–28. doi:10.1054/tuld.2000.0249.
  • Kotiaho, T., M. N. Eberlin, P. Vainiotalo, and R. Kostiainen. 2000. Electrospray mass and tandem mass spectrometry identification of ozone oxidation products of amino acids and small peptides. J. Am. Soc. Mass Spectrom. 11 (6):526–35. doi:10.1016/S1044-0305(00)00116-1.
  • Kowal, S. F., S. R. Allen, and T. F. Kahan. 2017. Wavelength-Resolved photon fluxes of indoor light sources: Implications for HO x production. Environ. Sci. Technol. 51 (18):10423–30. doi:10.1021/acs.est.7b02015.
  • Krumins, V., E.-K. Son, G. Mainelis, and D. E. Fennell. 2008. Retention of inactivated bioaerosols and ethene in a rotating gioreactor constructed for bioaerosol activity studies. Clean 36 (7):593–600. doi:10.1002/clen.200800004.
  • Laucks, M. L., G. Roll, G. Schweiger, and E. J. Davis. 2000. Physical and chemical (raman) characterization of bioaerosols - Pollen. J. Aerosol. Sci. 31 (3):307–19. doi:10.1016/S0021-8502(99)00058-0.
  • Lee, B. U., S. H. Kim, and S. S. Kim. 2002. Hygroscopic growth of E. coli and B. subtilis bioaerosols. J. Aerosol. Sci. 33 (12):1721–3. doi:10.1016/S0021-8502(02)00114-3.
  • Li, R., D. Dhankhar, J. Chen, A. Krishnamoorthi, T. C. Cesario, and P. M. Rentzepis. 2019. Identification of live and dead bacteria: A Raman spectroscopic study. IEEE Access 7:23549–59.
  • Lighthart, B., and A. J. Mohr. 2012. Atmospheric microbial aerosols: Theory and applications. New York: Springer Science & Business Media.
  • Liu, F. R., Z. G. Zhang, S. H. Fu, Y. F. Wei, T. Cheng, Q. C. Zhang, and X. P. Wu. 2014. Manipulation of aerosols revolving in taper-ring optical traps. Opt. Lett. 39 (1):100–3. doi:10.1364/OL.39.000100.
  • Liu, F. R., Z. G. Zhang, Y. F. Wei, Q. C. Zhang, T. Cheng, and X. P. Wu. 2014. Photophoretic trapping of multiple particles in tapered-ring optical field. Opt. Express 22 (19):23716–23. doi:10.1364/OE.22.023716.
  • Marr, L. C., J. W. Tang, J. Van Mullekom, and S. S. Lakdawala. 2019. Mechanistic insights into the effect of humidity on airborne influenza virus survival, transmission and incidence. J. Roy. Soc. Interface 16 (150):20180298. doi:10.1098/rsif.2018.0298.
  • Marsh, A., G. Rovelli, R. E. Miles, and J. P. Reid. 2019. Complexity of measuring and representing the hygroscopicity of mixed component aerosol. J. Phys. Chem. A 123 (8):1648–60. doi:10.1021/acs.jpca.8b11623.
  • Martín-Reviejo, M., and K. Wirtz. 2005. Is benzene a precursor for secondary organic aerosol? Environ. Sci. Technol. 39 (4):1045–54. doi:10.1021/es049802a,.
  • May, K. R., and H. A. Druett. 1968. A microthread technique for studying the viability of microbes in a simulated airborne state. Microbiology 51 (3):353–66. doi:10.1099/00221287-51-3-353.
  • McDevitt, J. J., K. M. Lai, S. N. Rudnick, E. A. Houseman, M. W. First, and D. K. Milton. 2007. Characterization of UVC light sensitivity of vaccinia virus. Appl. Environ. Microbiol. 73 (18):5760–6. doi:10.1128/AEM.00110-07.
  • McDevitt, J. J., S. N. Rudnick, and L. J. Radonovich. 2012. Aerosol susceptibility of influenza virus to UV-C light. Appl. Environ. Microbiol. 78 (6):1666–9. doi:10.1128/AEM.06960-11.
  • McFarland, A. R., J. S. Haglund, M. D. King, S. Hu, M. S. Phull, B. W. Moncla, and Y. Seo. 2010. Wetted wall cyclones for bioaerosol sampling. Aerosol. Sci. Technol. 44 (4):241–52. doi:10.1080/02786820903555552.
  • Mikhailov, E., S. Vlasenko, R. Niessner, and U. Pöschl. 2004. Interaction of aerosol particles composed of protein and salts zwith water vapor: Hygroscopic growth and microstructural rearrangement. Atmos. Chem. Phys. 4 (2):323–50.
  • Mohr, A. J. 2007. Fate and transport of microorganisms in air. In Manual of environmental microbiology. ed. Ronald L. Crawford, Jay L. Garland, Christon J. Hurst, Aaron L. Mills, and David A. Lipson, 961–71. 3rd ed. American Society of Microbiology.
  • Montgomery, T. L., and M. Corn. 1970. Aerosol deposition in a pipe with turbulent airflow. j. Aerosol Sci. 1 (3):185–213. doi:10.1016/0021-8502(70)90034-0.
  • Mudd, J. B., R. Leavitt, A. Ongun, and T. T. McManus. 1969. Reaction of ozone with amino acids and proteins. Atmos. Instrum. 3:669–82. doi:10.1016/0004-6981(69)90024-9.
  • National Research Council. 2005. Review of testing and evaluation methodology for biological point detectors: Abbreviated summary. Washington, DC: National Academies Press.
  • Nguyen, J. L., J. Schwartz, and D. W. Dockery. 2014. The relationship between indoor and outdoor temperature, apparent temperature, relative humidity, and absolute humidity. Indoor Air 24 (1):103–12. doi:10.1111/ina.12052.
  • Noti, J. D., F. M. Blachere, C. M. McMillen, W. G. Lindsley, M. L. Kashon, D. R. Slaughter, and D. H. Beezhold. 2013. High humidity leads to loss of infectious influenza virus from simulated coughs. PloS One 8 (2):e57485. doi:10.1371/journal.pone.0057485.
  • Otero-Fernandez, M., R. Thomas, N. Garton, A. Hudson, A. Haddrell, and J. Reid. 2019. Assessing the airborne survival of bacteria in populations of aerosol droplets with a novel technology. J. Roy. Soc. Interface 16 (150):20180779. 2018.0779. doi:10.1098/rsif.
  • Paez-Rubio, T., and J. Peccia. 2005. Estimating solar and nonsolar inactivation rates of airborne bacteria. J. Environ. Eng. 131 (4):512–17. doi:10.1061/(ASCE)0733-9372(2005)131:4(512).
  • Pan, Y. L., S. C. Hill, and M. Coleman. 2012. Photophoretic trapping of absorbing particles in air and measurement of their single-particle Raman spectra. Opt. Express 20 (5):5325–34. doi:10.1364/OE.20.005325.
  • Pan, Y.-L., J. L. Santarpia, S. Ratnesar-Shumate, E. Corson, J. Eshbaugh, S. C. Hill, C. C. Williamson, M. Coleman, C. Bare, and S. Kinahan. 2014. Effects of ozone and relative humidity on fluorescence spectra of octapeptide bioaerosol particles. J. Quant. Spectrosc. Radiat. Transfer 133:538–50. doi:10.1016/j.jqsrt.2013.09.017.
  • Pan, Y.-L., S. C. Hill, J. L. Santarpia, K. Brinkley, T. Sickler, M. Coleman, C. Williamson, K. Gurton, M. Felton, R. G. Pinnick, N. Baker, J. Eshbaugh, J. Hahn, E. Smith, B. Alvarez, A. Prugh, and W. Gardner. 2014. Spectrally-resolved fluorescence cross sections of aerosolized biological live agents and simulants using five excitation wavelengths in a BSL-3 laboratory. Opt. Express 22 (7):8165–89. doi:10.1364/OE.22.008165.
  • Park, C. W., K. Y. Yoon, Y. Do Kim, J. H. Park, and J. Hwang. 2011. Effects of condensational growth on culturability of airborne bacteria: Implications for sampling and control of bioaerosols. J. Aerosol. Sci. 42 (4):213–23. doi:10.1016/j.jaerosci.2011.01.006.
  • Paul, W., and H. Steinwedel. 1953. *Ein neues massenspektrometer ohne magnetfeld. Z Naturforsch A 8:448–50.
  • Paulsen, D., J. Dommen, M. Kalberer, A. S. H. Prévôt, R. Richter, M. Sax, M. Steinbacher, E. Weingartner, and U. Baltensperger. 2005. Secondary organic aerosol formation by irradiation of 1,3,5- Trimethylbenzene – NOx-H2O in a new reaction chamber for atmospheric chemistry and physics. Environ. Sci. Technol. 39 (8):2668–78. doi:10.1021/es0489137.
  • Peccia, J., H. M. Werth, S. Miller, and M. Hernandez. 2001. Effects of relative humidity on the ultraviolet induced inactivation of airborne bacteria. Aerosol. Sci. Technol. 35 (3):728–40. doi:10.1080/02786820152546770.
  • Peng, J., M. Hu, S. Guo, Z. Du, J. Zheng, D. Shang, M. Levy Zamora, L. Zeng, M. Shao, Y.-S. Wu, J. Zheng, Y. Wang, C. R. Glen, D. R. Collins, M. J. Molina, and R. Zhang. 2016. Markedly enhanced absorption and direct radiative forcing of black carbon under polluted urban environments. Proc. Nat. Acad. Sci. 113 (16):4266–71. doi:10.1073/pnas.1602310113.
  • Piercy, T. J., S. J. Smither, J. A. Steward, L. Eastaugh, and M. S. Lever. 2010. The survival of filoviruses in liquids, on solid substrates and in a dynamic aerosol. J. Appl. Microbiol. 109 (5):1531–9. doi:10.1111/j.1365-2672.2010.04778.x.
  • Pope, F. D. 2010. Pollen grains are efficient cloud condensation nuclei. Environ. Res. Lett. 5:044015.
  • Ratnesar-Shumate, S., M. L. Wagner, C. Kerechanin, G. House, K. M. Brinkley, C. Bare, N. A. Baker, R. Quizon, J. Quizon, A. Proescher, E. Van Gieson, and J. L. Santarpia. 2011. Improved method for the evaluation of real-time biological aerosol detection technologies. Aerosol. Sci. Technol. 45 (5):635–44. doi:10.1080/02786826.2010.551144.
  • Ratnesar-Shumate, S., Y. L. Pan, S. C. Hill, S. Kinahan, E. Corson, J. Eshbaugh, and J. L. Santarpia. 2015. Fluorescence spectra and biological activity of aerosolized bacillus spores and MS2 bacteriophage exposed to ozone at different relative humidities in a rotating drum. J. Quant. Spectrosc. Radiat. Transfer 153:13–28. doi:10.1016/j.jqsrt.2014.10.003.
  • Redding, B., and Y. L. Pan. 2015. Optical trap for both transparent and absorbing particles in air using a single shaped laser beam. Opt. Lett. 40 (12):2798–801. doi:10.1364/OL.40.002798.
  • Redding, B., S. C. Hill, D. Alexson, C. J. Wang, and Y. L. Pan. 2015. Photophoretic trapping of airborne particles using ultraviolet illumination. Opt. Express 23 (3):3630–9. doi:10.1364/OE.23.003630.
  • Reed, D. S., A. Nalca, and C. J. Roy. 2018. Aerobiology: History, development, and programs. In Medical Aspects of Biological Warfare, ed. J. Bozue, C. K. Cote and P. J. Glass, Fort Sam Houston, Texas: Office of The Surgeon General, Borden Institute, US Army Medical Department Center and School, Health Readiness Center of Excellence.
  • Reid, J. P., and L. Mitchem. 2006. Laser probing of single-aerosoldroplet dynamics. Annu. Rev. Phys. Chem. 57 (1):245–71. doi:10.1146/annurev.physchem.57.032905.104621.
  • Reid, J. P., H. Meresman, L. Mitchem, and R. Symes. 2007. Spectroscopic studies of the size and composition of single aerosol droplets. Int. Rev. Phys. Chem. 26 (1):139–92. doi:10.1080/01442350601081899.
  • Reponen, T., K. Willeke, V. Ulevicius, A. Reponen, and S. A. Grinshpun. 1996. Effect of relative humidity on the aerodynamic diameter and respiratory deposition of fungal spores. Atmos. Environ. 30 (23):3967–74. doi:10.1016/1352-2310(96)00128-8.
  • Rollins, A. W., A. Kiendler-Scharr, J. L. Fry, T. Brauers, S. S. Brown, H.-P. Dorn, W. P. Dubé, H. Fuchs, A. Mensah, T. F. Mentel, F. Rohrer, R. Tillmann, R. Wegener, P. J. Wooldridge, and R. C. Cohen. 2009. Isoprene oxidation by nitrate radical: Alkyl nitrate and secondary organic aerosol yields. Atmos. Chem. Phys. 9 (18):6685–703. doi:10.5194/acp-9-6685-2009.
  • Ruoff, K. L. 1998. Biological warfare. Clin. Microbiol. Newslett. 20 (21):173–6. doi:10.1016/S0196-4399(00)88655-9.
  • Santarpia, J. L. 2016. Bioaerosols in the environment: Populations, measurement and processes, In Aerobiology: The Toxicology of Airborne Pathogens and Toxins, ed. H. Salem and S. A. Katz, Cambridge: Royal Society of Chemistry.
  • Santarpia, J. L., S. Ratnesar-Shumate, J. U. Gilberry, and J. J. Quizon. 2013. Relationship between biologically fluorescent aerosol and local meteorological conditions. Aerosol. Sci. Technol. 47 (6):655–61. doi:10.1080/02786826.2013.781263.
  • Santarpia, J. L., Y.-L. Pan, S. C. Hill, N. Baker, B. Cottrell, L. McKee, S. Ratnesar-Shumate, and R. G. Pinnick. 2012. Changes in fluorescence spectra of bioaerosols exposed to ozone in a laboratory reaction chamber to simulate atmospheric aging. Opt. Express 20 (28):29867–81. doi:10.1364/OE.20.029867.
  • Sattler, B., H. Puxbaum, and R. Psenner. 2001. Bacterial growth in supercooled cloud droplets. Geophys. Res. Lett. 28 (2):239–42. doi:10.1029/2000GL011684.
  • Sawyer, W. D., J. V. Jemski, A. L. Hogge, Jr., H. T. Eigelsbach, E. K. Wolfe, H. G. Dangerfield, W. S. Gochenour, Jr., and D. Crozier. 1966. Effect of aerosol age on the infectivity of airborne Pasteurella tularensis for Macaca mulatta and man. J. Bacteriol. 91 (6):2180–4.
  • Seinfeld, J. H., and S. N. Pandis. 2016. Atmospheric chemistry and physics: From air pollution to climate change. New York: John Wiley & Sons.
  • Selma, M. V., A. M. Ibanez, M. Cantwell, and T. Suslow. 2008. Reduction by gaseous ozone of salmonella and microbial flora associated with fresh-cut cantaloupe. Food Microbiol. 25 (4):558–65. doi:10.1016/j.fm.2008.02.006.
  • Shaman, J., and M. Kohn. 2009. Absolute humidity modulates influenza survival, transmission, and seasonality. Proc. Nat. Acad. Sci. 106 (9):3243–8. doi:10.1073/pnas.0806852106.
  • Sivaprakasam, V., A. Huston, H. B. Lin, J. Eversole, P. Falkenstein, and A. Schultz. (2007, May). Field test results and ambient aerosol measurements using dual wavelength fluorescence excitation and elastic scatter for bio-aerosols. In Chemical and biological sensing VIII, ed. W. Augustus and Fountain III, Vol. 6554, 65540R. Bellingham, Washington: International Society for Optics and Photonics.
  • Smets, W., S. Moretti, S. Denys, and S. Lebeer. 2016. Airborne bacteria in the atmosphere: Presence, purpose, and potential. Atmos. Environ. 139:214–21. doi:10.1016/j.atmosenv.2016.05.038.
  • Smither, S. J., T. J. Piercy, L. Eastaugh, J. A. Steward, and M. S. Lever. 2011. An alternative method of measuring aerosol survival using spiders’ webs and its use for the filoviruses. J. Virol. Methods 177 (1):123–7. doi:10.1016/j.jviromet.2011.06.021.
  • Songer, J. R. 1967. Influence of relative humidity on the survival of some airborne viruses. Appl. Environ. Microbiol. 15 (1):35–42.
  • Su, W. C., A. D. Tolchinsky, B. T. Chen, V. I. Sigaev, and Y. S. Cheng. 2012. Evaluation of physical sampling efficiency for cyclone-based personal bioaerosol samplers in moving air environments. J. Environ. Monitor. 14 (9):2430–7. doi:10.1039/c2em30299c.
  • Svenningsson, B., J. Rissler, E. Swietlicki, M. Mircea, M. Bilde, M. C. Facchini, S. Decesari, S. Fuzzi, J. Zhou, J. Monster, and T. Rosenorn. 2006. Hygroscopic growth and critical supersaturations for mixed aerosol particles of inorganic and organic compounds of atmospheric relevance. Atmos. Chem. Phys. 6 (7):1937–52. doi:10.5194/acp-6-1937-2006.
  • Tang, J. W. 2009. The effect of environmental parameters on the survival of airborne infectious agents. J. Roy. Soc. Interf. 6 (suppl_6):S737–S46. doi:10.1098/rsif.2009.0227.focus.
  • Tellier, R., Y. Li, B. J. Cowling, and J. W. Tang. 2019. Recognition of aerosol transmission of infectious agents: A commentary. BMC Infect. Dis. 19 (1):101. doi:10.1186/s12879-019-3707-y.
  • Theunissen, H. J., N. A. Lemmens-den Toom, A. Burggraaf, E. Stolz, and M. F. Michel. 1993. Influence of temperature and relative humidity on the survival of Chlamydia pneumoniae in aerosols. Appl. Environ. Microbiol. 59 (8):2589–93.
  • Thompson, K.-A., A. M. Bennett, and J. T. Walker. 2011. Aerosol survival of Staphylococcus epidermidis. J. Hosp. Infect. 78 (3):216–20. doi:10.1016/j.jhin.2010.12.009.
  • Tong, Y., and B. Lighthart. 1998. Effect of simulated solar radiation on mixed outdoor atmospheric bacterial populations. FEMS Microbiol. Ecol. 26 (4):311–16. doi:10.1111/j.1574-6941.1998.tb00515.x.
  • Toprak, E., and M. Schnaiter. 2013. Fluorescent biological aerosol particles measured with the waveband integrated bioaerosol sensor WIBS-4: Laboratory tests combined with a one year field study. Atmos. Chem. Phys. 13 (1):225–43. doi:10.5194/acp-13-225-2013.
  • Upton, S. L., D. Mark, E. J. Douglass, D. J. Hall, and W. D. Griffiths. 1994. A wind tunnel evaluation of the physical sampling efficiencies of three bioaerosol samplers. J. Aerosol. Sci. 25 (8):1493–501. doi:10.1016/0021-8502(94)90220-8.
  • Vejerano, E. P., and L. C. Marr. 2018. Physico-chemical characteristics of evaporating respiratory fluid droplets. J. Roy. Soc. Interface 15 (139):20170939. doi:10.1098/rsif.2017.0939.
  • Verreault, D., C. Duchaine, M. Marcoux-Voiselle, N. Turgeon, and C. J. Roy. 2014. Design of an environmentally controlled rotating chamber for bioaerosol aging studies. Inhalation Toxicol. 26 (9):554–8. doi:10.3109/08958378.2014.928763.
  • Walikewitz, N., B. Jänicke, M. Langner, F. Meier, and W. Endlicher. 2015. The difference between the mean radiant temperature and the air temperature within indoor environments: A case study during summer conditions. Build. Environ. 84:151–61. doi:10.1016/j.buildenv.2014.11.004.
  • Walker, C. M., and G. Ko. 2007. Effect of ultraviolet germicidal irradiation on viral aerosols. Environ. Sci. Technol. 41 (15):5460–65. doi:10.1021/es070056u.
  • Wang, C. J., Y. L. Pan, S. C. Hill, and B. Redding. 2015. Photophoretic trapping-Raman spectroscopy for single pollen grains and fungal spores trapped in air. J. Quant. Spectrosc Radiat. Transf. 153:4–12. doi:10.1016/j.jqsrt.2014.11.004.
  • Wang, X., T. Liu, F. Bernard, X. Ding, S. Wen, Y. Zhang, Z. Zhang, Q. He, S. Lü, J. Chen, S. Saunders, and J. Yu. 2014. Design and characterization of a smog chamber for studying gas-phase chemical mechanisms and aerosol formation. Atmos. Meas. Tech. 7 (1):301–13. doi:10.5194/amt-7-301-2014.
  • Wathes, C. M., K. Howard, and A. J. F. Webster. 1986. The survival of Escherichia coli in an aerosol at air temperatures of 15 and 30 C and a range of humidities. Epidemiol. Infect. 97 (3):489–96. doi:10.1017/S0022172400063671.
  • Webb, S. J. 1961. Factors affecting the viability of air-borne bacteria: IV. The inactivation and reactivation of air-borne Serratia marcescens by ultraviolet and visible light. Can. J. Microbiol. 7 (4):607–19. doi:10.1139/m61-070.
  • Whitney, E. A. S., M. E. Beatty, T. H. Taylor, Jr, R. Weyant, J. Sobel, M. J. Arduino, and D. A. Ashford. 2003. Inactivation of Bacillus anthracis spores. Emerging Infect. Dis. 9 (6):623. doi:10.3201/eid0906.020377.
  • Wright, D. N., and G. D. Batley. 1969. Effect of relative humidity on the stability of Mycoplasma pneumoniae exposed to simulated solar ultraviolet and to visible radiation. Can. J. Microbiol. 15 (12):1449–52. doi:10.1139/m69-258.
  • Wuerker, R. F., H. Shelton, and R. V. Langmuir. 1959. Electrodynamic containment of charged particles. J. Appl. Phys. 30 (3):342–9. doi:10.1063/1.1735165.
  • Xie, C. G., M. A. Dinno, and Y. Q. Li. 2002. Near-infrared Raman spectroscopy of single optically trapped biological cells. Opt. Lett. 27 (4):249–51. doi:10.1364/OL.27.000249.
  • Xie, C. G., Y. Q. Li, W. Tang, and R. J. Newton. 2003. Study of dynamical process of heat denaturation in optically trapped single microorganisms by near-infrared Raman spectroscopy. J. Appl. Phys. 94 (9):6138–42. doi:10.1063/1.1617359.
  • Yang, W., and L. C. Marr. 2012. Mechanisms by which ambient humidity may affect viruses in aerosols. Appl. Environ. Microbiol. 78 (19):6781–8. doi:10.1128/AEM.01658-12.
  • Zhang, P., J. Prakash, Z. Zhang, M. S. Mills, N. K. Efremidis, D. N. Christodoulides, and Z. G. Chen. 2011. Trapping and guiding microparticles with morphing autofocusing airy beams. Opt. Lett. 36 (15):2883–5. doi:10.1364/OL.36.002883.
  • Zhang, Y., H. Yang, and U. Poschl. 2011. Analysis of nitrated proteins and tryptic peptides by HPLC-chip-MS/MS site-specific quantification, nitration degree and reactivity of tyrosine residues. Anal. Bioanal. Chem. 399:459–71.
  • Zhao, Y., A. J. Aarnink, R. Dijkman, T. Fabri, M. C. de Jong, and P. W. G. Koerkamp. 2012. Effects of temperature, relative humidity, absolute humidity, and evaporation potential on survival of airborne gumboro vaccine virus. Appl. Environ. Microbiol. 78 (4):1048–54. doi:10.1128/AEM.06477-11.