3,753
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

Evaluation of low-cost optical particle counters for monitoring individual indoor aerosol sources

ORCID Icon, ORCID Icon &
Pages 217-231 | Received 31 Jan 2019, Accepted 14 Nov 2019, Published online: 23 Dec 2019

References

  • Antépara, I., J. C. Fernández, P. Gamboa, I. Jauregui, and F. Miguel. 1995. Pollen allergy in the Bilbao Area (European Atlantic Seaboard Climate): Pollination forecasting methods. Clin. Exp. Allergy 25 (2):133–40. http://www.ncbi.nlm.nih.gov/pubmed/7750005. doi:10.1111/j.1365-2222.1995.tb01018.x.
  • Bandini, S., A. Mosca, and M. Palmonari. 2007. Common-sense spatial reasoning for information correlation in pervasive computing. Appl. Artif. Intel. 21 (4–5):405–25. doi:10.1080/08839510701252676.
  • Bardana, E. J. Jr. 2001. Indoor pollution and its impact on respiratory health. Ann. Allergy Asthma Immunol. 87 (6):33–40. doi:10.1016/S1081-1206(10)62338-1.
  • Bohren, C. F., and D. R. Huffman. 2004. Absorption and scattering of light by small particles. Wiley. ISBN: 978-0-471-29340-8.
  • Castell, N., F. R. Dauge, P. Schneider, M. Vogt, U. Lerner, B. Fishbain, D. Broday, and A. Bartonova. 2017. Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates? Environ. Int. 99:293–302. doi:10.1016/j.envint.2016.12.007.
  • Castell, N., P. Schneider, S. Grossberndt, M.F. Fredriksen, G. Sousa-Santos, M. Vogt, and A. Bartonova. 2018. Localized real-time information on outdoor air quality at kindergartens in Oslo, Norway using low-cost sensor nodes. Environ. Res. 165 (August):410–9. doi:10.1016/j.envres.2017.10.019.
  • Croner, S., and N.-I.M. Kjellman. 1992. Natural history of bronchial asthma in childhood. A prospective study from birth to 14 years of age. Allergy 47 (2):150–7. doi:10.1111/j.1398-9995.1992.tb00956.x.
  • Custovic, A., S. C. Taggart, and A. Woodcock. 1994. House dust mite and cat allergen in different indoor environments. Clin. Exp. Allergy 24 (12):1164–8. http://www.ncbi.nlm.nih.gov/pubmed/7889431. doi:10.1111/j.1365-2222.1994.tb03323.x.
  • Danesh Yazdi, M., Y. Wang, Q. Di, A. Zanobetti, and J. Schwartz. 2019. Long-term exposure to PM2.5 and ozone and hospital admissions of medicare participants in the Southeast USA. Environ. Int. 130 (September):104879. doi:10.1016/j.envint.2019.05.073.
  • Gao, M., J. Cao, and E. Seto. 2015. A distributed network of low-cost continuous reading sensors to measure spatiotemporal variations of PM2.5 in Xi’an, China. Environ. Pollut. 199 (April):56–65. doi:10.1016/j.envpol.2015.01.013.
  • Gullvåg, B. M. 1964. Morphological and quantitative investigations of pollen grains and spores by means of the Françon-Johansson interference microscope. Grana Palynol. 5 (1):3–23. doi:10.1080/00173136409429127.
  • Harving, H., J. Korsgaard, and R. Dahl. 1993. House-dust mites and associated environmental conditions in Danish Homes. Allergy 48 (2):106–9. doi:10.1111/j.1398-9995.1993.tb00694.x.
  • Hinds, W. C. 2012. Aerosol technology: Properties, behavior, and measurement of airborne particles. Wiley. ISBN: 978-0-471-19410-1.
  • Holstius, D. M., A. Pillarisetti, K. R. Smith, and E. Seto. 2014. Field calibrations of a low-cost aerosol sensor at a regulatory monitoring site in California. Atmos. Meas. Tech. 7 (4):1121–31. doi:10.5194/amt-7-1121-2014.
  • Horvath, H. 2009. Gustav mie and the scattering and absorption of light by particles: historic developments and basics. J. Quant. Spectrosc. Radiat. Transf. 110 (11):787–99. doi:10.1016/j.jqsrt.2009.02.022.
  • Jiao, W., G. Hagler, R. Williams, R. Sharpe, R. Brown, D. Garver, R. Judge, M. Caudill, J. Rickard, M. Davis, et al. 2016. Community air sensor network (CAIRSENSE) Project: Evaluation of low-cost sensor performance in a suburban environment in the Southeastern United States. Atmos. Meas. Tech. 9 (11):5281–92. doi:10.5194/amt-9-5281-2016.
  • Johnson, K. K., M. H. Bergin, A. G. Russell, and G. S.W. Hagler. 2018. Field test of several low-cost particulate matter sensors in high and low concentration urban environments. Aerosol Air Qual. Res. 18 (3):565–78. doi:10.4209/aaqr.2017.10.0418.
  • Jovašević-Stojanović, M., A. Bartonova, D. Topalović, I. Lazović, B. Pokrić, and Z. Ristovski. 2015. On the use of small and cheaper sensors and devices for indicative citizen-based monitoring of respirable particulate matter. Environ. Pollut. 206:696–704. doi:10.1016/j.envpol.2015.08.035.
  • Kelly, K.E., J. Whitaker, A. Petty, C. Widmer, A. Dybwad, D. Sleeth, R. Martin, and A. Butterfield. 2017. Ambient and laboratory evaluation of a low-cost particulate matter sensor. Environ. Pollut. 221:491–500. doi:10.1016/j.envpol.2016.12.039.
  • Kulkarni, P., P. A. Baron, and K. Willeke. 2011. Aerosol measurement, ed. P. Kulkarni, P. A. Baron, and K. Willeke. Hoboken, NJ, USA: John Wiley & Sons, Inc. doi:10.1002/9781118001684.
  • Kumar, P., C. Martani, L. Morawska, L. Norford, R. Choudhary, M. Bell, and M. Leach. 2016. Indoor air quality and energy management through real-time sensing in commercial buildings. Energy Build. 111:145–53. doi:10.1016/j.enbuild.2015.11.037.
  • Kumar, P., A. N. Skouloudis, M. Bell, M. Viana, M. C. Carotta, G. Biskos, and L. Morawska. 2016. Real-time sensors for indoor air monitoring and challenges ahead in deploying them to urban buildings. Sci. Total Environ. 560–561 (August):150–9. doi:10.1016/j.scitotenv.2016.04.032.
  • Leaderer, B. P., K. Belanger, E. Triche, T. Holford, D. R. Gold, Y. Kim, T. Jankun, P. Ren, J.-E. McSharry Je, T. A. E. Platts-Mills, et al. 2002. Dust mite, cockroach, cat, and dog allergen concentrations in homes of asthmatic children in the Northeastern United States: Impact of socioeconomic factors and population density. Environ. Health Perspect. 110 (4):419–25. doi:10.1289/ehp.02110419.
  • Manikonda, A., N. Zíková, P. K. Hopke, and A. R. Ferro. 2016. Laboratory assessment of low-cost PM monitors. J. Aerosol Sci. 102: 29–40. doi:10.1016/j.jaerosci.2016.08.010.
  • Mukherjee, A., L. Stanton, A. Graham, and P. Roberts. 2017. Assessing the utility of low-cost particulate matter sensors over a 12-week period in the Cuyama Valley of California. Sensors 17 (8):1805. doi:10.3390/s17081805.
  • Munir, A.K.M. 1994. Exposure to allergens and relation to sensitization and asthma in children. Linköping, Sweden: Linköpings Universitet.
  • Mygind, N., R. Dahl, S. Pedersen, and K. Thestrup-Pedersen. 1996. Diagnosis of allergy. Essential allergy. 2nd ed. Oxford: Blackwell Science Ltd.
  • Northcross, A. L., R. J. Edwards, M. A. Johnson, Z.-M. Wang, K. Zhu, T. Allen, K. R. Smith, et al. 2013. A low-cost particle counter as a realtime fine-particle mass monitor. Environ. Sci.: Process. Impacts 15 (2):433–9. doi:10.1039/C2EM30568B.
  • Ormstad, H. 2000. Suspended particulate matter in indoor air: adjuvants and allergen carriers. Toxicology 152 (1–3):53–68. doi:10.1016/S0300-483X(00)00292-4.
  • Patel, S., J. Li, A. Pandey, S. Pervez, R. K. Chakrabarty, and P. Biswas. 2017. Spatio-temporal measurement of indoor particulate matter concentrations using a wireless network of low-cost sensors in households using solid fuels. Environ. Res. 152 (January):59–65. doi:10.1016/j.envres.2016.10.001.
  • Pope Iii, C. A., R. T. Burnett, M. J. Thun, E. E. Calle, D. Krewski, K. Ito, and G. D. Thurston. 2002. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 287 (9):1132. doi:10.1001/jama.287.9.1132.
  • Radhakrishnan, T. 1947. The dispersion, briefringence and optical activity of quartz. Proc. Indian Acad. Sci. 25 (3):260. doi:10.1007/BF03171408.
  • Rai, A. C., P. Kumar, F. Pilla, A. N. Skouloudis, S. Di Sabatino, C. Ratti, A. Yasar, and D. Rickerby. 2017. End-user perspective of low-cost sensors for outdoor air pollution monitoring. Sci. Total Environ. 607–608:691. doi:10.1016/j.scitotenv.2017.06.266.
  • Rantio-Lehtimäki, A., A. Koivikko, R. Kupias, Y. Mäkinen, and A. Pohjola. 1991. Significance of sampling height of airborne particles for aerobiological information. Allergy 46 (1):68–76. http://www.ncbi.nlm.nih.gov/pubmed/2018211. doi:10.1111/j.1398-9995.1991.tb00545.x.
  • Rim, D., E. T. Gall, J. B. Kim, and G. N. Bae. 2017. Particulate matter in urban nursery schools: A Case study of Seoul, Korea during Winter Months. Build. Environ. 119:1–10. doi:10.1016/j.buildenv.2017.04.002.
  • Salimifard, P., D. Rim, C. Gomes, P. Kremer, and J. D. Freihaut. 2017. Resuspension of biological particles from indoor surfaces: Effects of humidity and air swirl. Sci. Total Environ. 583 (April):241–7. doi:10.1016/j.scitotenv.2017.01.058.
  • Salimifard, P., P. Kremer, D. Rim, and J. D. Freihaut. 2015. Resuspension of bacterial spore particles from duct surfaces. Healthy Buildings America, Boulder, CO. doi:10.13140/RG.2.1.5005.6407.
  • Snyder, E. G., Watkins, T. H. P. A. Solomon, E. D. Thoma, R. W. Williams, G. S. W. Hagler, David Shelow, D. A. Hindin, V. J. Kilaru, and P. W. Preuss. 2013. The changing paradigm of air pollution monitoring. Environ. Sci. Technol. 47 (20):11369–77. doi:10.1021/es4022602.
  • Sousan, S., K. Koehler, L. Hallett, and T. M. Peters. 2017. Evaluation of consumer monitors to measure particulate matter. J. Aerosol Sci. 107:123–33. doi:10.1016/j.jaerosci.2017.02.013.
  • Sousan, S., Koehler, K. G. Thomas, J. H. Park, M. Hillman, A. Halterman, Thomas, and M. Peters. 2016. Inter-comparison of low-cost sensors for measuring the mass concentration of occupational aerosols. Aerosol Sci. Technol. 50 (5):462–73. doi:10.1080/02786826.2016.1162901.
  • Steinle, S., S. Reis, C. E. Sabel, S. Semple, M. M. Twigg, C. F. Braban, S. R. Leeson, M. R. Heal, D. Harrison, C. Lin, et al. 2015. Personal exposure monitoring of PM 2.5 in indoor and outdoor microenvironments. Sci. Total Environ. 508 (March):383–94. doi:10.1016/j.scitotenv.2014.12.003.
  • Sterling, D. A., and R. D. Lewis. 1998. Pollen and fungal spores indoor and outdoor of mobile homes. Ann. Allergy Asthma Immunol. 80 (3):279–85. doi:10.1016/S1081-1206(10)62971-7.
  • Wang, Y., J. Li, H. Jing, Q. Zhang, J. Jiang, and P. Biswas. 2015. Laboratory evaluation and calibration of three low-cost particle sensors for particulate matter measurement. Aerosol Sci. Technol. 49 (11):1063–77. doi:10.1080/02786826.2015.1100710.
  • Weekly, K., D. Rim, L. Zhang, A. M. Bayen, W. W. Nazaroff, and C. J. Spanos. 2013. Low-cost coarse airborne particulate matter sensing for indoor occupancy detection. In 2013 IEEE International Conference on Automation Science and Engineering (CASE), 32–37. IEEE, Madison, WI, August 17–20. doi:10.1109/CoASE.2013.6653970.
  • Yan, L.-Q., C.-W. Tseng, H. W. Jensen, and R. Ramamoorthi. 2015. Physically-accurate fur reflectance. ACM Trans. Graph. 34 (6):1–13. doi:10.1145/2816795.2818080.
  • Yanosky, J. D., P. L. Williams, and D. L. MacIntosh. 2002. A comparison of two direct-reading aerosol monitors with the federal reference method for PM2.5 in indoor air. Atmos. Environ. 36 (1):107–13. doi:10.1016/S1352-2310(01)00422-8.
  • Zikova, N., P. K. Hopke, and A. R. Ferro. 2017. Evaluation of new low-cost particle monitors for PM2.5 concentrations measurements. J. Aerosol Sci. 105 (March):24–34. doi:10.1016/j.jaerosci.2016.11.010.
  • Zimmerman, N., A. A. Presto, S. P. N. Kumar, J. Gu, A. Hauryliuk, E. S. Robinson, A. L. Robinson, and R. Subramanian. 2017. Closing the gap on lower cost air quality monitoring: Machine learning calibration models to improve low-cost sensor performance. Atmos. Meas. Tech. Discuss. 5194:1–36. doi:10.5194/amt-2017-260.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.