748
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Dual dynamic airflow protection for the removal of fused silica micron particles in the final optics assembly

, , , , &
Pages 342-352 | Received 23 Aug 2019, Accepted 20 Nov 2019, Published online: 23 Dec 2019

References

  • Ancona, A., S. Döring, C. Jauregui, F. Röser, J. Limpert, S. Nolte, and A. Tünnermann. 2009. Femtosecond and picosecond laser drilling of metals at high repetition rates and average powers. Opt. Lett. 34 (21):3304. doi: 10.1364/OL.34.003304.
  • Baisden, P., L. Atherton, R. Hawley, T. Land, J. Menapace, P. Miller, M. Runkel, M. Spaeth, C. Stolz, T. Suratwala, et al. 2016. Large optics for the national ignition facility. Fusion Sci. Technol. 69 (1):295–351. doi: 10.13182/FST15-143.
  • Bude, J., C. W. Carr, P. E. Miller, T. Parham, P. Whitman, M. Monticelli, R. Raman, D. Cross, B. Welday, F. Ravizza, et al. 2017. Particle damage sources for fused silica optics and their mitigation on high energy laser systems. Opt. Express 25 (10):11414. doi: 10.1364/OE.25.011414.
  • Cheng, X., X. Miao, H. Wang, L. Qin, Y. Ye, Q. He, Z. Ma, L. Zhao, and S. He. 2014. Surface contaminant control technologies to improve laser damage resistance of optics. Adv. Cond. Matter Phys. 2014:1–7.
  • Demos, S., R. Negres, R. Raman, M. Feit, K. Manes, and A. Rubenchik. 2015. Relaxation dynamics of nanosecond laser superheated material in dielectrics. Optica 2 (8):765–72. doi: 10.1364/OPTICA.2.000765.
  • Demos, S. G., R. A. Negres, R. N. Raman, M. D. Feit, K. R. Manes, and A. M. Rubenchik. 2015. Morphology of ejected debris from laser super-heated fused silica following exit surface laser-induced damage. SPIE, 96320S.
  • Demos, S. G., R. A. Negres, R. N. Raman, A. M. Rubenchik, and M. D. Feit. 2013. Material response during nanosecond laser induced breakdown inside of the exit surface of fused silica. Laser Photonics Rev. 7 (3):444–52. doi: 10.1002/lpor.201200100.
  • Demos, S. G., R. A. Negres, and A. M. Rubenchik. 2014. Dynamics of the plume containing nanometric-sized particles ejected into the atmospheric air following laser-induced breakdown on the exit surface of a CaF2 optical window. Appl. Phys. Lett. 104:31603.
  • Demos, S., M. Staggs, K. Minoshima, and J. Fujimoto. 2002. Characterization of laser induced damage sites in optical components. Opt. Express 10 (25):1444–50. doi: 10.1364/OE.10.001444.
  • Fleurot, N., C. Cavailler, and J. L. Bourgade. 2005. The Laser Mégajoule (LMJ) project dedicated to inertial confinement fusion: Development and construction status. Fusion Eng. Des. 74 (1-4):147–54. doi: 10.1016/j.fusengdes.2005.06.251.
  • Gourdin, W., E. Dzenitis, D. Martin, K. Listiyo, G. Sherman, W. Kent, R. Butlin, C. Stolz, and J. Pryatel. 2004. In-situ surface debris inspection and removal system for upward-facing transport mirrors of the National Ignition Facility. in 36th Annual Boulder Damage Symposium on Optical Materials for High Power Lasers, NIST, Boulder, CO, 107–19.
  • Gushwa, K., and C. Torrie. 2014. Coming clean: Understanding and mitigating optical contamination and laser induced damage in advanced LIGO. SPIE Laser Damage–46th Annual Symposium on Optical Materials for High Power Lasers, National Institute of Standards and Technology, Boulder, CO.
  • Haynam, C. A., P. J. Wegner, J. M. Auerbach, M. W. Bowers, S. N. Dixit, G. V. Erbert, G. M. Heestand, M. A. Henesian, M. R. Hermann, K. S. Jancaitis, et al. 2007. National ignition facility laser performance status. Appl. Opt. 46 (16):3276–303. doi: 10.1364/AO.46.003276.
  • Neauport, J., P. Cormont, L. Lamaignère, C. Ambard, F. Pilon, and H. Bercegol. 2008. Concerning the impact of polishing induced contamination of fused silica optics on the laser-induced damage density at 351nm. Opt. Commun. 281 (14):3802–5. doi: 10.1016/j.optcom.2008.03.031.
  • Peng, G., L. Lu, and Z. Dong. 2019. Propagation of laser-induced particles from fused silica. Chin. J. Lasers 46:125–31.
  • Pryatel, J., W. Gourdin, S. Frieders, G. Ruble, and M. Monticelli. 2014. Cleaning practices and facilities for the National Ignition Facility (NIF). SPIE Laser Damage–46th Annual Symposium on Optical Materials for High Power Lasers, National Institute of Standards and Technology, Boulder, CO.
  • Raman, R. N., S. G. Demos, N. Shen, E. Feigenbaum, R. A. Negres, S. Elhadj, A. M. Rubenchik, and M. J. Matthews. 2016. Damage on fused silica optics caused by laser ablation of surface-bound microparticles. Opt. Express 24 (3):2634. doi: 10.1364/OE.24.002634.
  • Raman, R. N., R. A. Negres, and S. G. Demos. 2011. Kinetics of ejected particles during breakdown in fused silica by nanosecond laser pulses. Appl. Phys. Lett. 98:51901.
  • Rentsch, S., R. Pericet-Camara, G. Papastavrou, and M. Borkovec. 2006. Probing the validity of the Derjaguin approximation for heterogeneous colloidal particles. Phys. Chem. Chem. Phys. 8 (21):2531. doi: 10.1039/b602145j.
  • Wang, B., M. Wang, X. Miao, X. Cheng, and W. Wu. 2014. Status of cleanliness maintaining in target beam enclosures in SG III facilities and contamination sources analysis. SPIE, 92800A.
  • Wong, J., J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney. 2006. Morphology and microstructure in fused silica induced by high fluence ultraviolet 3ω (355nm) laser pulses. J. Non Cryst. Solids 352 (3):255–72. doi: 10.1016/j.jnoncrysol.2005.11.036.
  • Yin, J., and Y. Cao. 2019. Research of laser-induced damage of aluminum alloy 5083 on micro-arc oxidation and composite coatings treatment. Opt. Express 27 (13):18232. doi: 10.1364/OE.27.018232.
  • Yu, H. W., F. Jing, X. F. Wei, W. G. Zheng, X. M. Zhang, Z. Sui, M. Z. Li, D. X. Hu, and S. B. He. 2008. Status of prototype of SG-III high-power solid-state laser. 17th International Symposium on Gas Flow, Chemical Lasers, and High-Power Lasers, SPIE, Lisboa, Portugal, 713112–16.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.