2,155
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Comparison of discrete, discrete-sectional, modal and moment models for aerosol dynamics simulations

, , , , &
Pages 739-760 | Received 08 Aug 2019, Accepted 19 Jan 2020, Published online: 21 Feb 2020

References

  • Ackermann, I. J., H. Hass, M. Memmesheimer, A. Ebel, F. S. Binkowski, and U. Shankar. 1998. Modal aerosol dynamics model for Europe: Development and first applications. Atmos. Environ. 32 (17):2981–2999. doi:10.1016/S1352-2310(98)00006-5.
  • Binkowski, F. S., and U. Shankar. 1995. The regional particulate matter model: 1. Model description and preliminary results. J. Geophys. Res. 100 (D12):26191–26209. doi:10.1029/95JD02093.
  • Biswas, P., C. Y. Wu, M. R. Zachariah, and B. McMillin. 1997. Characterization of iron oxide-silica nanocomposites in flames: Part II. Comparison of discrete-sectional model predictions to experimental data. J. Mater. Res. 12 (3):714–723. doi:10.1557/JMR.1997.0106.
  • Brown, D. P., E. I. Kauppinen, J. K. Jokiniemi, S. G. Rubin, and P. Biswas. 2006. A method of moments based CFD model for polydisperse aerosol flows with strong interphase mass and heat transfer. Comput. Fluids 35 (7):762–780. doi:10.1016/j.compfluid.2006.01.012.
  • Chadha, T. S., M. Yang, K. Haddad, V. B. Shah, S. Li, and P. Biswas. 2017. Model based prediction of nanostructured thin film morphology in an aerosol chemical vapor deposition process. Chem. Eng. J. 310:102–113. doi:10.1016/j.cej.2016.10.105.
  • Fuchs, N. A., and A. G. Sutugin. 1971. Topics in current aerosol research (Part 2), eds. G. M. Hidy and J. R. Brock. New York: Pergamon.
  • Frenklach, M., and S. J. Harris. 1987. Aerosol dynamics modeling using the method of moments. J. Colloid Interface Sci. 118 (1):252–261. doi:10.1016/0021-9797(87)90454-1.
  • Friedlander, S. K. 2000. Smoke, dust, and haze: Fundamentals of aerosol dynamics. Topics in chemical engineering. New York: Oxford University Press.
  • Friedlander, S. K., and C. S. Wang. 1966. The self-preserving particle size distribution for coagulation by Brownian motion. J. Colloid Interface Sci. 22 (2):126–132. doi:10.1016/0021-9797(66)90073-7.
  • Gao, Q., S. Li, M. Yang, P. Biswas, and Q. Yao. 2017. Measurement and numerical simulation of ultrafine particle size distribution in the early stage of high-sodium lignite combustion. Proc. Combust. Inst. 36 (2):2083–2090. doi:10.1016/j.proci.2016.07.085.
  • Gelbard, F., and J. H. Seinfeld. 1978. Numerical solution of the dynamic equation for particulate systems. J. Comput. Phys. 28 (3):357–375. doi:10.1016/0021-9991(78)90058-X.
  • Gelbard, F., and J. H. Seinfeld. 1979. The general dynamic equation for aerosols. Theory and application to aerosol formation and growth. J. Colloid Interface Sci. 68 (2):363–382. doi:10.1016/0021-9797(79)90289-3.
  • Gelbard, F., and J. H. Seinfeld. 1980. Simulation of multicomponent aerosol dynamics. J. Colloid Interface Sci. 78 (2):485–501. doi:10.1016/0021-9797(80)90587-1.
  • Gelbard, F., Y. Tambour, and J. H. Seinfeld. 1980. Sectional representations for simulating aerosol dynamics. J. Colloid Interface Sci. 76 (2):541–556. doi:10.1016/0021-9797(80)90394-X.
  • Geng, J., H. Park, and E. Sajo. 2013. Simulation of aerosol coagulation and deposition under multiple flow regimes with arbitrary computational precision. Aerosol Sci. Technol. 47 (5):530–42. doi:10.1080/02786826.2013.770126.
  • Harrington, D. Y., and S. M. Kreidenweis. 1998. Simulations of sulfate aerosol dynamics part ii: Model intercomparison. Atmos. Environ. 32 (10):1701–1709. doi:10.1016/S1352-2310(97)00453-6.
  • He, X., Z. Gan, S. Fisenko, D. Wang, H. M. El-Kaderi, and W.-N. Wang. 2017. Rapid formation of metal–organic frameworks (MOFs) based nanocomposites in microdroplets and their applications for CO2 photoreduction. ACS Appl. Mater. Interfaces 9 (11):9688–9698. doi:10.1021/acsami.6b16817.
  • Jeong, J. I., and M. Choi. 2003. A simple bimodal model for the evolution of non-spherical particles undergoing nucleation, coagulation and coalescence. J. Aerosol Sci. 34:965–976. doi:10.1016/S0021-8502(03)00067-3.
  • Kommu, S., B. Khomami, and P. Biswas. 2004. Simulation of aerosol dynamics and transport in chemically reacting particulate matter laden flows. Part II: Application to CVD reactors. Chem. Eng. Sci. 59 (2):359–371. doi:10.1016/j.ces.2003.05.010.
  • Korhonen, H., K. Lehtinen, and M. Kulmala. 2004. Multicomponent aerosol dynamics model UHMA: Model development and validation. Atmos. Chem. Phys. 4 (3):757–771. doi:10.5194/acp-4-757-2004.
  • Kruis, F. E., K. A. Kusters, S. E. Pratsinis, and B. Scarlett. 1993. A simple model for the evolution of the characteristics of aggregate particles undergoing coagulation and sintering. Aerosol Sci. Technol. 19 (4):514–526. doi:10.1080/02786829308959656.
  • Landgrebe, J. D., and S. E. Pratsinis. 1989. Gas-phase manufacture of particulates: Interplay of chemical reaction and aerosol coagulation in the free-molecular regime. Ind. Eng. Chem. Res. 28 (10):1474–1481. doi:10.1021/ie00094a007.
  • Landgrebe, J. D., and S. E. Pratsinis. 1990. A discrete-sectional model for particulate production by gas-phase chemical reaction and aerosol coagulation in the free-molecular regime. J. Colloid Interface Sci. 139 (1):63–86. doi:10.1016/0021-9797(90)90445-T.
  • Lee, K., J. Chen, and J. Gieseke. 1984. Log-normally preserving size distribution for Brownian coagulation in the free-molecule regime. Aerosol Sci. Technol. 3 (1):53–62. doi:10.1080/02786828408958993.
  • Lehtinen, K., and M. Kulmala. 2003. A model for particle formation and growth in the atmosphere with molecular resolution in size. Atmos. Chem. Phys. 3 (1):251–257. doi:10.5194/acp-3-251-2003.
  • Lin, L.-Y., S. Kavadiya, B. B. Karakocak, Y. Nie, R. Raliya, S. T. Wang, M. Y. Berezin, and P. Biswas. 2018. Zno1− x/carbon dots composite hollow spheres: Facile aerosol synthesis and superior CO2 photoreduction under UV, visible and near-infrared irradiation. Appl. Catal. B: Environ. 230:36–48. doi:10.1016/j.apcatb.2018.02.018.
  • Lin, L.-Y., Y. Nie, S. Kavadiya, T. Soundappan, and P. Biswas. 2017. N-doped reduced graphene oxide promoted nano TiO2 as a bifunctional adsorbent/photocatalyst for CO2 photoreduction: Effect of N species. Chem. Eng. J. 316:449–460. doi:10.1016/j.cej.2017.01.125.
  • Lin, W. Y., V. Sethi, and P. Biswas. 1992. Multicomponent aerosol dynamics of the Pb-O2 system in a bench scale flame incinerator. Aerosol Sci. Technol. 17 (2):119–133. doi:10.1080/02786829208959565.
  • Marchisio, D. L., and R. O. Fox. 2005. Solution of population balance equations using the direct quadrature method of moments. J. Aerosol Sci. 36 (1):43–73. doi:10.1016/j.jaerosci.2004.07.009.
  • McGraw, R. 1997. Description of aerosol dynamics by the quadrature method of moments. Aerosol Sci. Technol. 27 (2):255–265. doi:10.1080/02786829708965471.
  • Moniruzzaman, C. G., and K. Y. Park. 2006. A discrete-sectional model for particle growth in aerosol reactor: Application to titania particles. Korean J. Chem. Eng. 23 (1):159–166. doi:10.1007/BF02705709.
  • Mukherjee, D., A. Prakash, and M. Zachariah. 2006. Implementation of a discrete nodal model to probe the effect of size-dependent surface tension on nanoparticle formation and growth. J. Aerosol Sci. 37 (10):1388–1399. doi:10.1016/j.jaerosci.2006.01.008.
  • Otto, E., H. Fissan, S. Park, and K. Lee. 1999. The log-normal size distribution theory of brownian aerosol coagulation for the entire particle size range: Part II—Analytical solution using Dahneke’s coagulation kernel. J. Aerosol Sci. 30 (1):17–34. doi:10.1016/S0021-8502(98)00038-X.
  • Otto, E., F. Stratmann, H. Fissan, S. Vemury, and S. E. Pratsinis. 1994. Quasi-self-preserving log-normal size distributions in the transition regime. Part. Part. Syst. Charact. 11 (5):359–366. doi:10.1002/ppsc.19940110502.
  • Panda, S., and S. E. Pratsinis. 1995. Modeling the synthesis of aluminum particles by evaporation-condensation in an aerosol flow reactor. Nanostruct. Mater. 5:755–767. doi:10.1016/0965-9773(95)00292-M.
  • Pirjola, L., M. Kulmala, M. Wilck, A. Bischoff, F. Stratmann, and E. Otto. 1999. Formation of sulphuric acid aerosols and cloud condensation nuclei: An expression for significant nucleation and model comparison. J. Aerosol Sci. 30 (8):1079–1094. doi:10.1016/S0021-8502(98)00776-9.
  • Prakash, A., A. Bapat, and M. Zachariah. 2003. A simple numerical algorithm and software for solution of nucleation, surface growth, and coagulation problems. Aerosol Sci. Technol. 37 (11):892–898. doi:10.1080/02786820300933.
  • Pratsinis, S. E. 1988. Simultaneous nucleation, condensation, and coagulation in aerosol reactors. J. Colloid Interface Sci. 124 (2):416–427. doi:10.1016/0021-9797(88)90180-4.
  • Randolph, A. D., and M. A. Larson. 1971. Theory of particulate processes. New York, NY: Academic Press.
  • Riemer, N., M. West, R. A. Zaveri, and R. C. Easter. 2009. Simulating the evolution of soot mixing state with a particle-resolved aerosol model. J. Geophys. Res. 114 (D9):D09202. doi:10.1029/2008JD011073.
  • Sandu, A. 2006. Piecewise polynomial solutions of aerosol dynamic equation. Aerosol Sci. Technol. 40 (4):261–273. doi:10.1080/02786820500543274.
  • Schild, A., A. Gutsch, H. Mühlenweg, and S. Pratsinis. 1999. Simulation of nanoparticle production in premixed aerosol flow reactors by interfacing fluid mechanics and particle dynamics. J. Nanopart. Res. 1 (2):305–315.
  • Seigneur, C., A. B. Hudischewskyj, J. H. Seinfeld, K. T. Whitby, E. R. Whitby, J. R. Brock, and H. M. Barnes. 1986. Simulation of aerosol dynamics: A comparative review of mathematical models. Aerosol Sci. Technol. 5 (2):205–222. doi:10.1080/02786828608959088.
  • Seinfeld, J. H., and S. N. Pandis. 2016. Atmospheric chemistry and physics: From air pollution to climate change. New Jersey: John Wiley and Sons.
  • Sharma, G., S. Dhawan, N. Reed, R. Chakrabarty, and P. Biswas. 2019. Collisional growth rate and correction factor for TiO2 nanoparticles at high temperatures in free molecular regime. J. Aerosol Sci. 127:27–37. doi:10.1016/j.jaerosci.2018.10.002.
  • Sharma, G., Y. Wang, R. Chakrabarty, and P. Biswas. 2019. Modeling simultaneous coagulation and charging of nanoparticles at high temperatures using the method of moments. J. Aerosol Sci. 132:70–82. doi:10.1016/j.jaerosci.2019.03.011.
  • Smith, A. J., C. G. Wells, and M. Kraft. 2018. A new iterative scheme for solving the discrete Smoluchowski equation. J. Comput. Phys. 352:373–387. doi:10.1016/j.jcp.2017.09.045.
  • Suh, S.-M., M. Zachariah, and S. Girshick. 2001. Modeling particle formation during low-pressure silane oxidation: Detailed chemical kinetics and aerosol dynamics. J. Vac. Sci. Technol. A 19 (3):940–951. doi:10.1116/1.1355757.
  • Suriyawong, A., X. Chen, and P. Biswas. 2010. Nano-structured sorbent injection strategies for heavy metal capture in combustion exhausts. Aerosol Sci. Technol. 44 (8):676–691. doi:10.1080/02786826.2010.485589.
  • Talukdar, S. S., and M. T. Swihart. 2004. Aerosol dynamics modeling of silicon nanoparticle formation during silane pyrolysis: A comparison of three solution methods. J. Aerosol Sci. 35 (7):889–908. doi:10.1016/j.jaerosci.2004.02.004.
  • Tsantilis, S., H. Kammler, and S. Pratsinis. 2002. Population balance modeling of flame synthesis of titania nanoparticles. Chem. Eng. Sci. 57 (12):2139–2156. doi:10.1016/S0009-2509(02)00107-0.
  • Vemury, S., and S. E. Pratsinis. 1995. Self-preserving size distributions of agglomerates. J. Aerosol Sci. 26 (2):175–85. doi:10.1016/0021-8502(94)00103-6.
  • Wang, Y., G. Sharma, C. Koh, V. Kumar, R. Chakrabarty, and P. Biswas. 2017. Influence of flame-generated ions on the simultaneous charging and coagulation of nanoparticles during combustion. Aerosol Sci. Technol. 51 (7):833–844. doi:10.1080/02786826.2017.1304635.
  • Wang, Y., J. Fang, M. Attoui, T. S. Chadha, W. -N. Wang, and P. Biswas. 2014. Application of half mini DMA for Sub 2 nm particle size distribution measurement in an electrospray and a flame aerosol reactor. J. Aerosol Sci. 71:52–64. doi:10.1016/j.jaerosci.2014.01.007.
  • Williams, M. 1986. Some topics in nuclear aerosol dynamics. Prog. Nucl. Energy 17 (1):1–52. doi:10.1016/0149-1970(86)90041-7.
  • Wright, D., S. Yu, P. Kasibhatla, R. McGraw, S. Schwartz, V. Saxena, and G. Yue. 2002. Retrieval of aerosol properties from moments of the particle size distribution for kernels involving the step function: Cloud droplet activation. J. Aerosol Sci. 33 (2):319–337. doi:10.1016/S0021-8502(01)00172-0.
  • Wu, C.-Y., and P. Biswas. 1998. Study of numerical diffusion in a discrete-sectional model and its application to aerosol dynamics simulation. Aerosol Sci. Technol. 29 (5):359–378. doi:10.1080/02786829808965576.
  • Wu, J. J., and R. C. Flagan. 1988. A discrete-sectional solution to the aerosol dynamic equation. J. Colloid Interface Sci. 123:339–352. doi:10.1016/0021-9797(88)90255-X.
  • Xiong, Y., M. K. Akhtar, and S. E. Pratsinis. 1993. Formation of agglomerate particles by coagulation and sintering—Part II. The evolution of the morphology of aerosol-made titania, silica and silica-doped titania powders. J. Aerosol Sci. 24 (3):301–313. doi:10.1016/0021-8502(93)90004-S.
  • Xiong, Y., and S. E. Pratsinis. 1993. Formation of agglomerate particles by coagulation and sintering—Part I. A two-dimensional solution of the population balance equation. J. Aerosol Sci. 24 (3):283–300. doi:10.1016/0021-8502(93)90003-R.
  • Yamamoto, M. 2014. A moment method of the log-normal size distribution with the critical size limit in the free-molecular regime. Aerosol Sci. Technol. 48 (7):725–737. doi:10.1080/02786826.2014.922161.
  • Yu, F., G. Luo, and X. Ma. 2012. Regional and global modeling of aerosol optical properties with a size, composition, and mixing state resolved particle microphysics model. Atmos. Chem. Phys. 12 (13):5719–5736. doi:10.5194/acp-12-5719-2012.
  • Yu, S., P. S. Kasibhatla, D. L. Wright, S. E. Schwartz, R. McGraw, and A. Deng. 2003. Moment‐based simulation of microphysical properties of sulfate aerosols in the eastern United States: Model description, evaluation, and regional analysis. J. Geophys. Res. 108 (D12):4353. doi:10.1029/2002JD002890.
  • Yu, S., R. Mathur, J. Pleim, D. Wong, R. Gilliam, K. Alapaty, C. Zhao, and X. Liu. 2014. Aerosol indirect effect on the grid-scale clouds in the two-way coupled WRF-CMAQ: Model description, development, evaluation and regional analysis. Atmos. Chem. Phys. 14 (20):11247–11285. doi:10.5194/acpd-13-25649-2013.
  • Zhang, Q., G. Sharma, J. P. Wong, A. Y. Davis, M. S. Black, P. Biswas, and R. J. Weber. 2018. Investigating particle emissions and aerosol dynamics from a consumer fused deposition modeling 3d printer with a lognormal moment aerosol model. Aerosol Sci. Technol. 52 (10):1099–1111. doi:10.1080/02786826.2018.1464115.
  • Zhang, Y., C. Seigneur, J. H. Seinfeld, M. Z. Jacobson, and F. S. Binkowski. 1999. Simulation of aerosol dynamics: A comparative review of algorithms used in air quality models. Aerosol Sci. Technol. 31 (6):487–514. doi:10.1080/027868299304039.
  • Zhu, S., K. N. Sartelet, and C. Seigneur. 2015. A size-composition resolved aerosol model for simulating the dynamics of externally mixed particles: SCRAM (v 1.0). Geosci. Model Dev. 8 (6):1595–1612. doi:10.5194/gmd-8-1595-2015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.