1,101
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Quantifying and improving the optical performance of the laser ablation aerosol particle time of flight mass spectrometer (LAAPToF) instrument

, , , , ORCID Icon, , & show all
Pages 761-771 | Received 25 Jul 2018, Accepted 31 Jan 2019, Published online: 21 Feb 2020

References

  • Boucher, O., D. Randall, P. Artaxo, C. Bretherton, G. Feingold, P. Forster, V.-M. Keminen, Y. Kondo, H. Liao, U. Lohmann, et al. 2013. Clouds and aerosols in: Climate change 2013: The physical science basis. In Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, eds. T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P. M. Midgley Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  • Brands, M., M. Kamphus, T. Böttger, J. Schneider, F. Drewnick, A. Roth, J. Curtius, C. Voigt, A. Borbon, M. Beekmann, et al. 2011. Characterization of a newly developed aircraft-based laser ablation aerosol mass spectrometer (ALABAMA) and first field deployment in urban pollution plumes over Paris during Megapoli 2009. Aerosol Sci. Technol. 45 (1):46–64. doi:10.1080/02786826.2010.517813.
  • Carson, P. G., M. V. Johnston, and A. S. Wexler. 1997. Real-time monitoring of the surface and total composition of aerosol particles. Aerosol Sci. Technol. 26 (4):291–300. doi:10.1080/02786829708965431.
  • Chen, Y., J. Cao, R. Huang, F. Yang, Q. Wang, and Y. Wang. 2016. Characterization, mixing state, and evolution of urban single particles in Xi’an (China) during wintertime haze days. Sci. Total Environ. 573:937–45. doi:10.1016/j.scitotenv.2016.08.151.
  • Coe, H., and J. D. Allan. 2006. Mass spectrometric methods for aerosol composition measurements. In Analytical techniques for atmospheric measurement, ed. D. E. Heard. Hoboken, NJ: Blackwell Publishing.
  • Cziczo, D. J., K. D. Froyd, C. Hoose, E. J. Jensen, M. Diao, M. A. Zondlo, J. B. Smith, C. H. Twohy, and D. M. Murphy. 2013. Clarifying the dominant sources and mechanisms of cirrus cloud formation. Science 340 (6138):1320–24. doi:10.1126/science.1234145.
  • Cziczo, D. J., D. S. Thomson, T. L. Thompson, P. J. DeMott, and D. M. Murphy. 2006. Particle analysis by laser mass spectrometry (PALMS) studies of ice nuclei and other low number density particles. Int. J. Mass Spectrom. 258 (1-3):21–29. doi:10.1016/j.ijms.2006.05.013.
  • Dall’Osto, M., and R. Harrison. 2006. Chemical characterisation of single airborne particles in Athens (Greece) by ATOFMS. Atmos. Environ. 40:7614–31. doi:10.1016/j.atmosenv.2006.06.053.
  • DeCarlo, P. F., J. R. Kimmel, A. Trimborn, M. J. Northway, J. T. Jayne, A. C. Aiken, M. Gonin, K. Fuhrer, T. Horvath, K. S. Docherty, et al. 2006. Field-deployable, high-resolution, time-of-flight aerosol mass spectrometer. Anal. Chem. 78 (24):8281–89. doi:10.1021/ac061249n.
  • Drewnick, F., M. Dall’Osto, and R. Harrison. 2008. Characterization of aerosol particles from grass mowing by joint deployment of ToF-AMS and ATOFMS instruments. Atmos. Environ. 42 (13):3006–17. doi:10.1016/j.atmosenv.2007.12.047.
  • Gard, E., J. E. Mayer, B. D. Morrical, T. Dienes, D. P. Fergenson, and K. A. Prather. 1997. Real-time analysis of individual atmospheric aerosol particles: Design and performance of a portable ATOFMS. Anal. Chem. 69 (20):4083–91. doi:10.1021/ac970540n.
  • Gemayel, R., S. Hellebust, B. Temime-Roussel, N. Hayeck, J. T. Van Elteren, H. Wortham, and S. Gligorovski. 2016. The performance and the characterization of laser ablation aerosol particle time-of-flight mass spectrometry (LAAP-ToF-MS). Atmos. Meas. Tech. 9 (4):1947–59. doi:10.5194/amt-9-1947-2016.
  • George, I. J., and J. P. Abbatt. 2010. Heterogeneous oxidation of atmospheric aerosol particles by gas-phase radicals. Nat. Chem. 2 (9):713–22. doi:10.1038/nchem.806.
  • Hodkinson, J. R., and J. R. Greenfield. 1965. Response calculations for light-scattering aerosol counters and photometers. Appl. Opt. 4 (11):1463. doi:10.1364/AO.4.001463.
  • Jayne, J. T., D. C. Leard, X. Zhang, P. Davidovits, K. A. Smith, C. E. Kolb, and D. R. Worsnop. 2000. Development of an aerosol mass spectrometer for size and composition analysis of submicron particles. Aerosol Sci. Technol. 33 (1-2):49–70. doi:10.1080/027868200410840.
  • Jimenez, J. L., M. R. Canagaratna, N. M. Donahue, A. S. H. Prevot, Q. Zhang, J. H. Kroll, P. F. DeCarlo, J. D. Allan, H. Coe, N. L. Ng, et al. 2009. Evolution of organic aerosols in the atmosphere. Science 326 (5959):1525–29. doi:10.1126/science.1180353.
  • Johnston, M. V. 2000. Sampling and analysis of individual particles by aerosol mass spectrometry. J. Mass Spectrom. 35 (5):585–95. doi:10.1002/(sici)1096-9888(200005)35:5 < 585::Aid-jms992 > 3.0.Co;2-k.
  • Marsden, N. A., M. J. Flynn, J. D. Allan, and H. Coe. 2018. Online differentiation of mineral phase in aerosol particles by ion formation mechanism using a LAAP-ToF single-particle mass spectrometer. Atmos. Meas. Tech. 11 (1):195–213. doi:10.5194/amt-11-195-2018.
  • Marsden, N., M. J. Flynn, J. W. Taylor, J. D. Allan, and H. Coe. 2016. Evaluating the influence of laser wavelength and detection stage geometry on optical detection efficiency in a single-particle mass spectrometer. Atmos. Meas. Tech. 9 (12):6051–68. doi:10.5194/amt-9-6051-2016.
  • Miller, K. A., D. S. Siscovick, L. Sheppard, K. Shepherd, J. H. Sullivan, G. L. Anderson, and J. D. Kaufman. 2007. Long-term exposure to air pollution and incidence of cardiovascular events in women. N Engl. J. Med. 356 (5):447–58. doi:10.1056/NEJMoa054409.
  • Moffet, R. C., and K. A. Prather. 2005. Extending ATOFMS measurements to include refractive index and density. Anal. Chem. 77 (20):6535–41. doi:10.1021/ac0503097.
  • Morrical, B. D., D. P. Fergenson, and K. A. Prather. 1998. Coupling two-step laser desorption/ionization with aerosol time-of-flight mass spectrometry for the analysis of individual organic particles. J. Am. Soc. Mass Spectrom. 9 (10):1068–73. doi:10.1016/S1044-0305(98)00074-9.
  • Murphy, D. M. 2007. The design of single particle laser mass spectrometers. Mass Spectrom. Rev. 26 (2):150–65. doi:10.1002/mas.20113.
  • Murphy, D. M., D. S. Thomson, and M. J. Mahoney. 1998. In situ measurements of organics, meteoritic material, mercury, and other elements in aerosols at 5 to 19 kilometers. Science 282:1664–69. doi:10.1126/science.282.5394.1664.
  • Peck, J., L. A. Gonzalez, L. R. Williams, W. Xu, P. L. Croteau, M. T. Timko, J. T. Jayne, D. R. Worsnop, R. C. Miake-Lye, and K. A. Smith. 2016. Development of an aerosol mass spectrometer lens system for pm2.5. Aerosol Sci. Technol. 50 (8):781–89. doi:10.1080/02786826.2016.1190444.
  • Phares, D. J., K. P. Rhoads, and A. S. Wexler. 2002. Performance of a single ultrafine particle mass spectrometer. Aerosol Sci. Technol. 36 (5):583–92. doi:10.1080/02786820252883829.
  • Pratt, K. A., J. E. Mayer, J. C. Holecek, R. C. Moffet, R. O. Sanchez, T. P. Rebotier, H. Furutani, M. Gonin, K. Fuhrer, Y. Su, et al. 2009. Development and characterization of an aircraft aerosol time-of-flight mass spectrometer. Anal. Chem. 81 (5):1792–800. doi:10.1021/ac801942r.
  • Reents, W. D., S. W. Downey, A. B. Emerson, A. M. Mujsce, A. J. Muller, D. J. Siconolfi, J. D. Sinclair, and A. G. Swanson. 2007. Single particle characterization by time-of-flight mass spectrometry. Aerosol Sci. Technol. 23 (3):263–70. doi:10.1080/02786829508965311.
  • Stanier, C. O., A. Y. Khlystov, and S. N. Pandis. 2004. Ambient aerosol size distributions and number concentrations measured during the Pittsburgh air quality study (PAQS). Atmos. Environ. 38 (20):3275–84. doi:10.1016/j.atmosenv.2004.03.020.
  • Su, Y., M. F. Sipin, H. Furutani, and K. A. Prather. 2004. Development and characterization of an aerosol time-of-flight mass spectrometer with increased detection efficiency. Anal. Chem. 76 (3):712–19. doi:10.1021/ac034797z.
  • Sullivan, R. C., and K. A. Prather. 2005. Recent advances in our understanding of atmospheric chemistry and climate made possible by on-line aerosol analysis instrumentation. Anal. Chem. 77 (12):3861–85. doi:10.1021/ac050716i.
  • Thomson, D. S., A. M. Middlebrook, and D. M. Murphy. 1997. Thresholds for laser-induced ion formation from aerosols in a vacuum using ultraviolet and vacuum-ultraviolet laser wavelengths. Aerosol Sci. Technol. 26 (6):544–59. doi:10.1080/02786829708965452.
  • Thomson, D. S., M. E. Schein, and D. M. Murphy. 2000. Particle analysis by laser mass spectrometry wb-57f instrument overview. Aerosol Sci. Technol. 33 (1-2):153–69. doi:10.1080/027868200410903.
  • Vera, C. C., A. Trimborn, K.-P. Hinz, and B. Spengler. 2005. Initial velocity distributions of ions generated by in-flight laser desorption/ionization of individual polystyrene latex microparticles as studied by the delayed ion extraction method. Rapid Commun. Mass Spectrom. 19 (2):133–46. doi:10.1002/rcm.1753.
  • Xu, W., P. Croteau, L. Williams, M. Canagaratna, T. Onasch, E. Cross, X. Zhang, W. Robinson, D. Worsnop, and J. Jayne. 2016. Laboratory characterization of an aerosol chemical speciation monitor with pm2.5 measurement capability. Aerosol Sci. Technol. 51 (1):69–83. doi:10.1080/02786826.2016.1241859.
  • Zelenyuk, A., J. Cabalo, T. Baer, and R. E. Miller. 1999. Mass spectrometry of liquid aniline aerosol particles by IR/UV laser irradiation. Anal. Chem. 71 (9):1802–08. doi:10.1021/ac980971l.
  • Zelenyuk, A., and D. Imre. 2005. Single particle laser ablation time-of-flight mass spectrometer: An introduction to splat. Aerosol Sci. Technol. 39 (6):554–68. doi:10.1080/027868291009242.
  • Zelenyuk, A., D. Imre, J. Wilson, Z. Zhang, J. Wang, and K. Mueller. 2015. Airborne single particle mass spectrometers (splat II & minisplat) and new software for data visualization and analysis in a geo-spatial context. J. Am. Soc. Mass Spectrom. 26:257–70. doi:10.1007/s13361-014-1043-4.
  • Zelenyuk, A., J. Yang, E. Choi, and D. Imre. 2009. Splat II: An aircraft compatible, ultra-sensitive, high precision instrument for in-situ characterization of the size and composition of fine and ultrafine particles. Aerosol Sci. Technol. 43 (5):411–24. doi:10.1080/02786820802709243.
  • Zhang, X., K. A. Smith, D. R. Worsnop, J. Jimenez, J. T. Jayne, and C. E. Kolb. 2002. A numerical characterization of particle beam collimation by an aerodynamic lens-nozzle system: Part I. An individual lens or nozzle. Aerosol Sci. Technol. 36 (5):617–31. doi:10.1080/02786820252883856.
  • Zhang, X., K. A. Smith, D. R. Worsnop, J. L. Jimenez, J. T. Jayne, C. E. Kolb, J. Morris, and P. Davidovits. 2004. Numerical characterization of particle beam collimation: Part ii integrated aerodynamic-lens–nozzle system. Aerosol Sci. Technol. 38 (6):619–38. doi:10.1080/02786820490479833.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.