2,519
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Application of SERS on the chemical speciation of individual Aitken mode particles after condensational growth

, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 826-836 | Received 06 Nov 2019, Accepted 28 Jan 2020, Published online: 28 Feb 2020

References

  • Albrecht, M. G., and J. A. Creighton. 1977. Anomalously intense Raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc. 99 (15):5215–7. doi:10.1021/ja00457a071.
  • Ault, A. P., D. Zhao, C. J. Ebben, M. J. Tauber, F. M. Geiger, K. A. Prather, and V. H. Grassian. 2013. Raman microspectroscopy and vibrational sum frequency generation spectroscopy as probes of the bulk and surface compositions of size-resolved sea spray aerosol particles. Phys. Chem. Chem. Phys. 15 (17):6206–14. doi:10.1039/c3cp43899f.
  • Ciobanu, V. G., C. Marcolli, U. K. Krieger, U. Weers, and T. Peter. 2009. Liquid − liquid phase separation in mixed organic/inorganic aerosol particles. J. Phys. Chem. A 113 (41):10966–78. doi:10.1021/jp905054d.
  • Craig, R. L., A. L. Bondy, and A. P. Ault. 2015. Surface enhanced raman spectroscopy enables observations of previously undetectable secondary organic aerosol components at the individual particle level. Anal. Chem. 87 (15):7510–4. doi:10.1021/acs.analchem.5b01507.
  • David, L. J., and P. V. D. Richard. 1977. Surface Raman spectroelectrochemistry, part 1: heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. 84:1–20. 10.1016/S0022-0728(77.)80224-6.
  • Degen, I. A., and G. A. Newman. 1993. Raman spectra of inorganic ions. Spectrochim. Acta. A 49 (5-6):859–87. doi:10.1016/0584-8539(93)80110-V.
  • Dong, J. L., X. H. Li, L. J. Zhao, H. S. Xiao, F. Wang, X. Guo, and Y. H. Zhang. 2007. Raman observation of the interactions between NH4+, SO42-, and H2O in supersaturated (NH4)2SO4 droplets. J. Phys. Chem. B 111 (42):12170–6. doi:10.1021/jp072772o.
  • Ehn, M., J. A. Thornton, E. Kleist, M. Sipilä, H. Junninen, I. Pullinen, M. Springer, F. Rubach, R. Tillmann, B. Lee, et al, 2014. A large source of low-volatility secondary organic aerosol. Nature 506 (7489):476–9. doi:10.1038/nature13032.
  • Fernandez, A. E., G. S. Lewis, and S. V. Hering. 2014. Design and laboratory evaluation of a sequential spot sampler for time-resolved measurement of airborne particle composition. Aerosol Sci. Technol. 48 (6):655–63. doi:10.1080/02786826.2014.911409.
  • Fleischmann, M., P. J. Hendra, and A. J. McQuillan. 1974. Raman spectra of pyridine absorbed at a silver electrode. Chem. Phys. Lett. 26 (2):163–6. doi:10.1016/0009-2614(74)85388-1.
  • Fu, Y., C. Kuppe, V. K. Valev, H. Fu, L. Zhang, and J. Chen. 2017. Surface-enhanced raman spectroscopy: A facile and rapid method for the chemical component study of individual atmospheric aerosol. Environ. Sci. Technol. 51 (11):6260–7. doi:10.1021/acs.est.6b05910.
  • Gen, M., and C. K. Chan. 2017. Electrospray surface-enhanced Raman spectroscopy (ES-SERS) for probing surface chemical compositions of atmospherically relevant particles. Atmos. Chem. Phys. 17 (22):14025–37. doi:10.5194/acp-17-14025-2017.
  • Gen, M., D. D. Huang, and C. K. Chan. 2018. Reactive uptake of glyoxal by ammonium-containing salt particles as a function of relative humidity. Environ. Sci. Technol. 52 (12):6903–11. doi:10.1021/acs.est.8b00606.
  • Gen, M., R. Kunihisa, A. Matsuki, and C. K. Chan. 2019. Electrospray surface enhanced Raman spectroscopy ES SERS for studying organic coatings of atmospheric aerosol particles. Aerosol Sci. Technol. 53 (7):760–70. doi:10.1080/02786826.2019.1597964.
  • Hering, S. V., S. R. Spielman, and G. L. Lewis. 2014. Moderated, water-based condensational growth of particles in a laminar flow. Aerosol Sci. Technol. 48 (4):401–408. doi:10.1080/02786826.2014.881460.
  • Hornig, J.F., R.H. Soderberg, A.C. BarefootIII, and J.F. Galasyn. 1985. Wood smoke analysis: vaporization losses of PAH from filters and levoglucosan as a distinctive marker for wood smoke. In Polynuclear aromatic hydrocarbons: Mechanisms, methods, and metabolism, ed. M. Cooke and A. J. Dennis, 561–8. Columbus: Battelle Press.
  • Iwamoto, Y., K. Kinouchi, K. Watanabe, N. Yamazaki, and A. Matsuki. 2016. Simultaneous measurement of CCN activity and chemical composition of fine-mode aerosols at noto Peninsula, Japan, in autumn 2012. Aerosol Air Qual. Res. 16 (9):2107–18. doi:10.4209/aaqr.2015.09.0545.
  • Iwata, A., and A. Matsuki. 2018. Characterization of individual ice residual particles by the single droplet freezing method: A case study in the Asian dust outflow region. Atmos. Chem. Phys. 18 (3):1785–804. doi:10.5194/acp-18-1785-2018.
  • Jentzsch, P. V., B. Kampe, V. Ciobota, P. Roesch, and J. Popp. 2013. Inorganic Salts in Atmospheric Particulate Matter: Raman Spectroscopy as an Analytical Tool. Spectrochim. Acta. A 115:697–708. doi:10.1016/j.saa.2013.06.085.
  • Lewis, G. S., and S. V. Hering. 2013. Minimizing concentration effects in water-based, laminar-flow condensation particle counters. Aerosol Sci. Technol. 47 (6):645–54. doi:10.1080/02786826.2013.779629.
  • Ling, T. Y., and C. K. Chan. 2008. Partial crystallization and deliquescence of particles containing ammonium sulfate and dicarboxylic acids. J. Geophys. Res. 113 (D14). doi:10.1029/2008JD009779.
  • Locker, H.B. 1988. The use of levoglucosan to assess the environmental impact of residential wood-burning on air quality. PhD thesis., Dartmouth College, Hanover, NH.
  • Meng, J. W., M. C. Yeung, Y. J. Li, B. Y. L. Lee, and C. K. Chan. 2014. Size-resolved cloud condensation nuclei (CCN) activity and closure analysis at the HKUST Supersite in Hong Kong. Atmos. Chem. Phys. 14 (18):10267–82. doi:10.5194/acp-14-10267-2014.
  • Ofner, J., T. Deckert-Gaudig, K. A. Kamilli, A. Held, H. Lohninger, V. Deckert, and B. Lendl. 2016. Tip-enhanced Raman spectroscopy of atmospherically relevant aerosol nanoparticles. Anal. Chem. 88 (19):9766–72. doi:10.1021/acs.analchem.6b02760.
  • Phan-Quang, G. C., H. K. Lee, H. W. Teng, C. S. L. Koh, B. Q. Yim, E. K. M. Tan, W. L. Tok, I. Y. Phang, and X. Y. Ling. 2018. Plasmonic hotspots in air: An omnidirectional three-dimensional platform for stand-off in-air SERS sensing of airborne species. Angew. Chem. Int. Ed. 57 (20):5792–6. doi:10.1002/anie.201802214.
  • Schmale, J., S. Henning, S. Decesari, B. Henzing, H. Keskinen, K. Sellegri, J. Ovadnevaite, M. L. Pöhlker, J. Brito, A. Bougiatioti, et al, 2018. Long-term cloud condensation nuclei number concentration, particle number size distribu- tion and chemical composition measurements at regionally representative observatories. Atmos. Chem. Phys. 18 (4):2853–81. doi:10.5194/acp-18-2853-2018.
  • Schmidt, M. S., J. Hübner, and A. Boisen. 2012. Large area fabrication of leaning silicon nanopillars for surface enhanced Raman spectroscopy. Adv. Mater. 24 (10):11–8. doi:10.1002/adma.201103496.
  • Sellegri, K., Y. J. Yoon, S. G. Jennings, C. D. O'Dowd, L. Pirjola, S. Cautenet, H. Chen, and T. Hoffmann. 2005. Quantification of coastal new ultra-fine particles formation from in situ and chamber measurements during the BIOFLUX campaign. Environ. Chem. 2 (4):260–70. doi:10.1071/EN05074.
  • Shan, F., X.-Y. Zhang, X.-C. Fu, L.-J. Zhang, D. Su, S.-J. Wang, J.-Y. Wu, and T. Zhang. 2017. Investigation of simultaneously existed Raman scattering enhancement and inhibiting fluorescence using surface modified gold nanostars as SERS probes. Sci. Rep. 7 (1):6813. doi:10.1038/s41598-017-07311-8.
  • Sun, Z., F. Duan, K. He, J. Du, L. Yang, H. Li, T. Ma, and S. Yang. 2019. Physicochemical analysis of individual atmosphere fine particles based on effective surface-enhanced Raman spectroscopy. J. Environ. Sci. 75:388–95. doi:10.1016/j.jes.2018.06.006.
  • Tajima, N., N. Fukushima, K. Ehara, and H. Sakurai. 2011. Mass range and optimized operation of the aerosol particle mass analyzer. Aerosol Sci. Tech. 45 (2):196–214. doi:10.1080/02786826.2010.530625.
  • Tirella, P. N., R. L. Craig, D. B. Tubbs, N. E. Olson, Z. Lei, and A. Ault. 2018. Extending surface enhanced Raman spectroscopy (SERS) of atmospheric aerosol particles to the accumulation mode (150–800 nm). Environ. Sci.: Process. Impacts 20 (11):1570–80. doi:10.1039/C8EM00276B.
  • Ueda, S., T. Nakayama, F. Taketani, K. Adachi, A. Matsuki, Y. Iwamoto, Y. Sadanaga, and Y. Matsumi. 2016. Light absorption and morphological properties of soot-containing aerosols observed at an East Asian outflow site, Noto Peninsula, Japan. Atmos. Chem. Phys. 16 (4):2525–41. doi:10.5194/acp-16-2525-2016.
  • Venkateswarlu, P., H. D. Bist, and Y. S. Jain. 1975. Laser excited Raman spectrum of ammonium sulfate single crystal. J. Raman Spectrosc. 3 (2-3):143–51. doi:10.1002/jrs.1250030205.
  • Wang, W., J. Zhao, M. Short, and H. Zeng. 2015. Real-time in vivo cancer diagnosis using Raman spectroscopy. J. Biophoton. 8 (7):527–45. doi:10.1002/jbio.201400026.
  • Wei, H., W. Leng, J. Song, C. Liu, M. R. Willner, Q. Huang, W. Zhou, and P. J. Vikesland. 2019. Real-time monitoring of ligand exchange kinetics on gold nanoparticle surfaces enabled by hot spot-normalized surface-enhanced Raman scattering. Environ. Sci. Technol. 53 (2):575–85. doi:10.1021/acs.est.8b03144.
  • Wei, H., W. Leng, J. Song, M. R. Willner, L. C. Marr, W. Zhou, and P. J. Vikesland. 2018. Improved Quantitative SERS enabled by surface Plasmon enhanced elastic light scattering. Anal. Chem. 90 (5):3227–37. doi:10.1021/acs.analchem.7b04667.
  • Wong, C. L., U. S. Dinish, K. D. Buddharaju, M. S. Schmidt, and M. Olivo. 2014. Surface-enhanced Raman scattering (SERS)-based volatile organic compounds (VOCs) detection using plasmonic bimetallic nanogap substrate. Appl. Phys. A 117 (2):687–92. doi:10.1007/s00339-014-8723-6.
  • Xu, W., X. Ling, J. Xiao, M. S. Dresselhaus, J. Kong, H. Xu, Z. Liu, and J. Zhang. 2012. Surface enhanced Raman spectroscopy on a flat graphene surface. PNAS 109 (24):9281–6. doi:10.1073/pnas.1205478109.
  • Yeung, M. C., and C. K. Chan. 2010. Water content and phase transitions in particles of inorganic and organic species and their mixtures using micro-Raman spectroscopy. Aerosol Sci. Technol. 44 (4):269–80. doi:10.1080/02786820903583786.