959
Views
4
CrossRef citations to date
0
Altmetric
Original Article

Effect of the nitrate group on yields and composition of secondary organic aerosol formed from reactions of alkyl nitrates with OH radicals in the presence of NOx

&
Pages 1070-1082 | Received 15 Jan 2020, Accepted 11 Apr 2020, Published online: 19 May 2020

References

  • Algrim, L. B., and P. J. Ziemann. 2016. Effect of the keto group on yields and composition of organic aerosol formed from OH radical-initiated reactions of ketones in the presence of NOx. J. Phys. Chem. A 120 (35):6978–89. doi:10.1021/acs.jpca.6b05839.
  • Algrim, L. B., and P. J. Ziemann. 2019. Effect of the hydroxyl group on yields and composition of organic aerosol formed from OH radical-initiated reactions of alcohols in the presence of NOx. ACS Earth Space Chem. 3 (3):413–23. doi:10.1021/acsearthspacechem.9b00015.
  • Atkinson, R. 2000. Atmospheric chemistry of VOCs and NOx. Atmos. Environ. 34 (12–14):2063–101. doi:10.1016/S1352-2310(99)00460-4.
  • Atkinson, R. 2007. Rate constants for the atmospheric reactions of alkoxy radicals: An updated estimation method. Atmos. Environ. 41 (38):8468–85. doi:10.1016/j.atmosenv.2007.07.002.
  • Atkinson, R., W. P. L. Carter, A. M. Winer, and J. N. Pitts, Jr. 1981. An experimental protocol for the determination of OH radical rate constants with organics using methyl nitrite photolysis as an OH radical source. J. Air Pollut. Control Assoc. 31 (10):1090–2. doi:10.1080/00022470.1981.10465331.
  • Aumont, B., S. Szopa, and S. Madronich. 2005. Modelling the evolution of organic carbon during its gas-phase tropospheric oxidation: Development of an explicit model based on a self-generating approach. Atmos. Chem. Phys. 5 (9):2497–517. doi:10.5194/acp-5-2497-2005.
  • Boschan, R., R. T. Merrow, and R. W. Van Dolah. 1955. The chemistry of nitrate esters. Chem. Rev. 55 (3):485–510. doi:10.1021/cr50003a001.
  • Boyd, C. M., J. Sanchez, L. Xu, A. J. Eugene, T. Nah, W. Y. Tuet, M. I. Guzman, and N. L. Ng. 2015. Secondary organic aerosol formation from the β-pinene + NO3 system: Effect of humidity and peroxy radical fate. Atmos. Chem. Phys. 15 (13):7497–522. doi:10.5194/acp-15-7497-2015.
  • Claflin, M. S., and P. J. Ziemann. 2018. Identification and quantitation of aerosol products of the reaction of β-pinene with NO3 radicals and implications for gas- and particle-phase reaction mechanisms. J. Phys. Chem. A 122 (14):3640–52. doi:10.1021/acs.jpca.8b00692.
  • Day, D. A., S. Liu, L. M. Russell, and P. J. Ziemann. 2010. Organonitrate group concentrations in submicron particles with high nitrate and organic fractions in coastal southern California. Atmos. Environ. 44 (16):1970–9. doi:10.1016/j.atmosenv.2010.02.045.
  • Dockery, D. W., C. A. Pope, X. Xu, J. D. Spengler, J. H. Ware, M. E. Fay, B. G. Ferris, and F. E. Speizer. 1993. An association between air pollution and mortality in six US cities. N. Engl. J. Med. 329 (24):1753–9. doi:10.1056/NEJM199312093292401.
  • Finlayson-Pitts, B. J., and J. N. Pitts, Jr. 2000. Chemistry of the upper and lower atmosphere: Theory, experiments, and applications. San Diego, CA: Academic Press.
  • Fry, J. L., D. C. Draper, K. C. Barsanti, J. N. Smith, J. Ortega, P. M. Winkler, M. J. Lawler, S. S. Brown, P. M. Edwards, R. C. Cohen, et al. 2014. Secondary organic aerosol formation and organic nitrate yield from NO3 oxidation of biogenic hydrocarbons. Environ. Sci. Technol. 48 (20):11944–53. doi:10.1021/es502204x.
  • Gong, H., A. Matsunaga, and P. J. Ziemann. 2005. Products and mechanism of secondary aerosol formation from the reactions of linear alkenes with NO3 radicals. J. Phys. Chem. A 109 (19):4312–24. doi:10.1021/jp058024l.
  • Hilal, S. H., S. W. Karickhoff, and L. A. Carreira. 2003. Prediction of the vapor pressure boiling point, heat of vaporization and diffusion coefficient of organic compounds. QSAR Comb. Sci. 22 (6):565–74. doi:10.1002/qsar.200330812.
  • Krechmer, J. E., D. Pagonis, P. J. Ziemann, and J. L. Jimenez. 2016. Quantification of gas-wall partitioning in Teflon environmental chambers using rapid bursts of low-volatility oxidized species generated in situ. Environ. Sci. Technol. 50 (11):5757–65. doi:10.1021/acs.est.6b00606.
  • Kroll, J. H., and J. H. Seinfeld. 2008. Chemistry of secondary organic aerosol: Formation and evolution of low-volatility organics in the atmosphere. Atmos. Environ. 42 (16):3593–624. doi:10.1016/j.atmosenv.2008.01.003.
  • Krupnick, A. J., W. Harrington, and B. Ostro. 1990. Ambient ozone and acute health effects: Evidence from daily data. J. Environ. Econ. Manag. 18 (1):1–18. doi:10.1016/0095-0696(90)90048-4.
  • La, Y. S., M. Camredon, P. J. Ziemann, R. Valorso, A. Matsunaga, V. Lannuque, J. Lee-Taylor, A. Hodzic, S. Madronich, and B. Aumont. 2016. Impact of chamber wall loss of gaseous organic compounds on secondary organic aerosol formation: Explicit modeling of SOA formation from alkane and alkene oxidation. Atmos. Chem. Phys. 16 (3):1417–31. doi:10.5194/acp-16-1417-2016.
  • Lim, Y. B., and P. J. Ziemann. 2005. Products and mechanism of secondary organic aerosol formation from reactions of n-alkanes with OH radicals in the presence of NOx. Environ. Sci. Technol. 39 (23):9229–9236. doi:10.1021/es051447g.
  • Lim, Y. B., and P. J. Ziemann. 2009a. Effects of molecular structure on aerosol yields from OH radical-initiated reactions of linear, branched, and cyclic alkanes in the presence of NOx. Environ. Sci. Technol. 43 (7):2328–34. doi:10.1021/es803389s.
  • Lim, Y. B., and P. J. Ziemann. 2009b. Chemistry of secondary organic aerosol formation from OH radical-initiated reactions of linear, branched, and cyclic alkanes in the presence of NOx. Aerosol Sci. Technol. 43 (6):604–19. doi:10.1080/02786820902802567.
  • Lim, Y. B., and P. J. Ziemann. 2009c. Kinetics of the heterogeneous conversion of 1,4-hydroxycarbonyls to cyclic hemiacetals and dihydrofurans on organic aerosol particles. Phys. Chem. Chem. Phys. 11 (36):8029–39. doi:10.1039/b904333k.
  • Matsunaga, A., K. S. Docherty, Y. Lim, and P. J. Ziemann. 2009. Composition and yields of secondary aerosol formed from OH radical-initiated reactions of linear alkenes in the presence of NOx: Modeling and measurements. Atmos. Environ. 43 (6):1349–57. doi:10.1016/j.atmosenv.2008.12.004.
  • Matsunaga, A., and P. J. Ziemann. 2009. Yields of β-hydroxynitrates and dihydroxynitrates in aerosol formed from OH radical-initiated reactions of linear alkenes in the presence of NOx. J. Phys. Chem. A 113 (3):599–606. doi:10.1021/jp807764d.
  • Matsunaga, A., and P. J. Ziemann. 2010. Gas-wall partitioning of organic compounds in a Teflon film chamber and potential effects on reaction product and aerosol yield measurements. Aerosol Sci. Technol. 44 (10):881–92. doi:10.1080/02786826.2010.501044.
  • McDonald, B. C., J. A. de Gouw, J. B. Gilman, S. H. Jathar, A. Akherati, C. D. Cappa, J. L. Jimenez, J. Lee-Taylor, P. L. Hayes, S. A. McKeen, et al. 2018. Volatile chemical products emerging as largest petrochemical source of urban organic emissions. Science 359 (6377):760–4. doi:10.1126/science.aaq0524.
  • Murphy, J., M. Delucchi, D. McCubbin, and H. Kim. 1999. The cost of crop damage caused by ozone air pollution from motor vehicles. J. Environ. Manag. 55 (4):273–89. doi:10.1006/jema.1999.0256.
  • Ng, N. L., S. S. Brown, A. T. Archibald, E. Atlas, R. C. Cohen, J. N. Crowley, D. A. Day, N. M. Donahue, J. L. Fry, H. Fuchs, et al. 2017. Nitrate radicals and biogenic volatile organic compounds mechamisms and organic aerosol. Atmos. Chem. Phys. 17 (3):2103–62. doi:10.5194/acp-17-2103-2017.
  • Ng, N. L., A. J. Kwan, J. D. Surratt, A. W. H. Chan, P. S. Chhabra, A. Sorooshian, H. O. T. Pye, J. D. Crounse, P. O. Wennberg, R. C. Flagan, et al. 2008. Secondary organic aerosol (SOA) formation from reaction of isoprene with nitrate radicals (NO3). Atmos. Chem. Phys. 8 (14):4117–40. doi:10.5194/acp-8-4117-2008.
  • Odum, J. R., T. Hoffmann, F. Bowman, D. Collins, R. C. Flagan, and J. H. Seinfeld. 1996. Gas/particle partitioning and secondary organic aerosol yields. Environ. Sci. Technol. 30 (8):2580–5. doi:10.1021/es950943+.
  • Pankow, J. F. 1994. An absorption model of the gas/aerosol partitioning of organic compounds in the atmosphere. Atmos. Environ. 28 (2):185–8. doi:10.1016/1352-2310(94)90093-0.
  • Pankow, J. F., and W. E. Asher. 2008. SIMPOL.1: A simple group contribution method for predicting vapor pressures and enthalpies of vaporization of multifunctional organic compounds. Atmos. Chem. Phys. 8 (10):2773–96. doi:10.5194/acp-8-2773-2008.
  • Peng, Z., and J. L. Jimenez. 2019. KinSim: A research-grade user-friendly visualized kinetic simulator for chemical kinetics and environmental chemistry teaching. J. Chem. Educ. 96 (4):806–11. doi:10.1021/acs.jchemed.9b00033.
  • Perring, A. E., S. E. Pusede, and R. C. Cohen. 2013. An observational perspective on the atmospheric impacts of alkyl and multifunctional nitrates on ozone and secondary organic aerosol. Chem. Rev. 113 (8):5848–70. doi:10.1021/cr300520x.
  • Pöschl, U. 2005. Atmospheric aerosols: Composition, transformation, climate and health effects. Angew. Chem. Int. Ed. 44 (46):7520–40. doi:10.1002/anie.200501122.
  • Pye, H. O. T., D. J. Luecken, C. M. Boyd, N. L. Ng, K. R. Baker, B. R. Ayres, J. O. Bash, K. Baumann, W. P. L. Carter, E. Edgerton, et al. 2015. Modeling the current and future roles of particulate organic nitrates in the southeastern United States. Environ. Sci. Technol. 49 (24):14195–203. doi:10.1021/acs.est.5b03738.
  • Singh, H. B. 1987. Reactive nitrogen in the troposphere. Environ. Sci. Technol. 21 (4):320–7. doi:10.1021/es00158a001.
  • Taylor, W. D., T. D. Allston, M. J. Moscato, G. B. Fazekas, R. Kozlowski, and G. A. Takacs. 1980. Atmospheric photodissociation lifetimes for nitromethane, methyl nitrite, and methyl nitrate. Int. J. Chem. Kinet. 12 (4):231–40. doi:10.1002/kin.550120404.
  • Tobias, H. J., D. E. Beving, P. J. Ziemann, H. Sakurai, M. Zuk, P. H. McMurry, D. Zarling, R. Waytulonis, and D. B. Kittelson. 2001. Chemical analysis of diesel engine nanoparticles using a nano-DMA/thermal desorption particle beam mass spectrometer. Environ. Sci. Technol. 35 (11):2233–43. doi:10.1021/es0016654.
  • Tobias, H. J., P. M. Kooiman, K. S. Docherty, and P. J. Ziemann. 2000. Real-time chemical analysis of organic aerosols using a thermal desorption particle beam mass spectrometer. Aerosol Sci. Technol. 33 (1–2):170–90. doi:10.1080/027868200410912.
  • Vereecken, L., and J. Peeters. 2009. Decomposition of substituted alkoxy radicals-part I: A generalized structure-activity relationship for reaction barrier heights. Phys. Chem. Chem. Phys. 11 (40):9062–74. doi:10.1039/b909712k.
  • Vereecken, L., and J. Peeters. 2010. A structure-activity relationship for the rate coefficient of H-migration in substituted alkoxy radicals. Phys. Chem. Chem. Phys. 12 (39):12608–20. doi:10.1039/c0cp00387e.
  • Wang, N., S. D. Jorga, J. R. Pierce, N. M. Donahue, and S. N. Pandis. 2018. Particle wall-loss correction methods in smog chamber experiments. Atmos. Meas. Tech. 11 (12):6577–88. doi:10.5194/amt-11-6577-2018.
  • Wiedensohler, A., W. Birmili, A. Nowak, A. Sonntag, K. Weinhold, M. Merkel, B. Wehner, T. Tuch, S. Pfeifer, M. Fiebig, et al. 2012. Mobility particle size spectrometers: Harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions. Atmos. Meas. Tech. 5 (3):657–85. doi:10.5194/amt-5-657-2012.
  • Wiedensohler, A., A. Wiesner, K. Weinhold, W. Birmili, M. Hermann, M. Merkel, T. Müller, S. Pfeifer, A. Schmidt, T. Tuch, et al. 2018. Mobility particle size spectrometers: Calibration procedures and measurement uncertainties. Aerosol Sci. Technol. 52 (2):146–64. doi:10.1080/02786826.2017.1387229.
  • Xu, L., S. Suresh, H. Guo, R. J. Weber, and N. L. Ng. 2015. Aerosol characterization over the Southeastern United States using high resolution aerosol mass spectrometry: Spatial and seasonal variation of aerosol composition and sources with a focus on organic nitrates. Atmos. Chem. Phys. 15 (13):7307–36. doi:10.5194/acp-15-7307-2015.
  • Yeh, G. K., M. S. Claflin, and P. J. Ziemann. 2015. Products and mechanism of the reaction of 1-pentadecene with NO3 radicals and the effect of a -ONO2 group on alkoxy radical decomposition. J. Phys. Chem. A 119 (43):10684–96. doi:10.1021/acs.jpca.5b07468.
  • Yeh, G. K., and P. J. Ziemann. 2014a. Alkyl nitrate formation from the reactions of C8−C14 n-alkanes with OH radicals in the presence of NOx. J. Phys. Chem. A 118 (37):8147–57. doi:10.1021/jp500631v.
  • Yeh, G. K., and P. J. Ziemann. 2014b. Identification and product yields of 1,4-hydroxynitrates in particles formed from the reactions of C8−C16 n-alkanes with OH radicals in the presence of NOx. J. Phys. Chem. A 118 (38):8797–806. doi:10.1021/jp505870d.
  • Yeh, G. K., and P. J. Ziemann. 2015. Gas-wall partitioning of oxygenated organic compounds: Measurements, structure–activity relationships, and correlation with gas chromatographic retention factor. Aerosol Sci. Technol. 49:726–37.
  • Zhang, Q., J. L. Jimenez, M. R. Canagaratna, J. D. Allan, H. Coe, I. M. Ulbrich, M. R. Alfarra, A. Takami, A. M. Middlebrook, Y. L. Sun, et al. 2007. Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere Midlatitudes. Geophys. Res. Lett. 34 (13), L13801. doi:10.1029/2007GL029979.
  • Zhang, X., C. D. Cappa, S. H. Jathar, R. C. McVay, J. J. Ensberg, M. J. Kleeman, and J. H. Seinfeld. 2014. Influence of vapor wall loss in laboratory chambers on yields of secondary organic aerosol. Proc. Natl. Acad. Sci. U. S. A. 111 (16):5802–7. doi:10.1073/pnas.1404727111.
  • Ziemann, P. J. 2011. Effects of molecular structure on the chemistry of aerosol formation from the OH-radical-initiated oxidation of alkanes and alkenes. Int. Rev. Phys. Chem. 30 (2):161–95. doi:10.1080/0144235X.2010.550728.
  • Ziemann, P. J., and R. Atkinson. 2012. Kinetics, products, and mechanisms of secondary organic aerosol formation. Chem. Soc. Rev. 41 (19):6582–605. doi:10.1039/c2cs35122f.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.