1,140
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Dual-cavity spectrometer for monitoring broadband light extinction by atmospheric aerosols

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1183-1196 | Received 27 Feb 2020, Accepted 22 Apr 2020, Published online: 26 May 2020

References

  • Andreae, M. O., and A. Gelencsér. 2006. Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmos. Chem. Phys. 6 (10):3131–48. doi:10.5194/acp-6-3131-2006.
  • Ångström, A. 1930. On the atmospheric transmission of sun radiation. II. Geogr. Ann. 12 (2–3):130–59. doi:10.1080/20014422.1930.11880522.
  • Ball, S. M., J. M. Langridge, and R. L. Jones. 2004. Broadband cavity enhanced absorption spectroscopy using light emitting diodes. Chem. Phys. Lett. 398 (1–3):68–74. doi:10.1016/j.cplett.2004.08.144.
  • Bluvshtein, N., J. M. Flores, L. Segev, and Y. Rudich. 2016. A new approach for retrieving the UV–vis optical properties of ambient aerosols. Atmos. Meas. Tech. 9 (8):3477–90. doi:10.5194/amt-9-3477-2016.
  • Bond, T. C., S. J. Doherty, D. W. Fahey, P. M. Forster, T. Berntsen, B. J. Deangelo, M. G. Flanner, S. Ghan, B. Kärcher, D. Koch, et al. 2013. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos. 118 (11):5380–552. doi:10.1002/jgrd.50171.
  • Buseck, P. R., K. Adachi, A. Gelencsér, É. Tompa, and M. Pósfai. 2014. Ns-Soot: A material-based term for strongly light-absorbing carbonaceous particles. Aerosol Sci. Technol. 48 (7):777–88. doi:10.1080/02786826.2014.919374.
  • Chakrabarty, R. K., H. Moosmüller, L. W. A. Chen, K. Lewis, W. P. Arnott, C. Mazzoleni, M. K. Dubey, C. E. Wold, W. M. Hao, and S. M. Kreidenweis. 2010. Brown carbon in tar balls from smoldering biomass combustion. Atmos. Chem. Phys. 10 (13):6363–70. doi:10.5194/acp-10-6363-2010.
  • Chamaillard, K. Ã., C. Kleefeld, S. G. Jennings, D. Ceburnis, and C. D. O. Dowd. 2006. Light scattering properties of sea-salt aerosol particles inferred from modeling studies and ground-based measurements. J. Quant. Spectrosc. Radiat. Transf. 101 (3):498–511. doi:10.1016/j.jqsrt.2006.02.062.
  • Chandran, S., A. Puthukkudy, and R. Varma. 2017. Dual-wavelength dual-cavity spectrometer for NO2 detection in the presence of aerosol interference. Appl. Phys. B 123 (7):1–8. doi:10.1007/s00340-017-6789-5.
  • Chandran, S., and R. Varma. 2016. Near infrared cavity enhanced absorption spectra of atmospherically relevant ether-1, 4-dioxane. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 153:704–8. doi:10.1016/j.saa.2015.09.030.
  • Chartier, R. T., and M. E. Greenslade. 2012. Initial investigation of the wavelength dependence of optical properties measured with a new multi-pass Aerosol Extinction Differential Optical Absorption Spectrometer (AE-DOAS). Atmos. Meas. Tech. 5 (4):709–21. doi:10.5194/amt-5-709-2012.
  • Czerwinski, F. 2010. allan v3.0 - File exchange - MATLAB Central. Accessed May 8, 2020. https://in.mathworks.com/matlabcentral/fileexchange/26659-allan-v3-0.
  • Dixneuf, S., A. A. Ruth, S. Vaughan, R. M. Varma, and J. Orphal. 2009. The time dependence of molecular iodine emission from Laminaria digitata. Atmos. Chem. Phys. 9 (3):823–9. doi:10.5194/acp-9-823-2009.
  • Fiedler, S. E., A. Hese, and A. A. Ruth. 2003. Incoherent broad-band cavity-enhanced absorption spectroscopy. Chem. Phys. Lett. 371 (3–4):284–94. doi:10.1016/S0009-2614(03)00263-X.
  • Garg, S., B. P. Chandra, V. Sinha, R. Sarda-Esteve, V. Gros, and B. Sinha. 2016. Limitation of the use of the absorption Angstrom exponent for source apportionment of equivalent black carbon: a case study from the north west Indo-Gangetic plain. Environ. Sci. Technol. 50 (2):814–24. doi:10.1021/acs.est.5b03868.
  • Gherman, T., D. S. Venables, S. Vaughan, J. Orphal, and A. A. Ruth. 2008. Incoherent broadband cavity-enhanced absorption spectroscopy in the near-ultraviolet : Application to HONO and NO2. Environ. Sci. Technol. 42 (3):890–5. doi:10.1021/es0716913.
  • Gyawali, M., W. P. Arnott, R. A. Zaveri, C. Song, H. Moosmüller, L. Liu, M. I. Mishchenko, L. W. A. Chen, M. C. Green, J. G. Watson, et al. 2012. Photoacoustic optical properties at UV, VIS, and near IR wavelengths for laboratory generated and winter time ambient urban aerosols. Atmos. Chem. Phys. 12 (5):2587–601. doi:10.5194/acp-12-2587-2012.
  • Haywood, J. M., and K. P. Shine. 1995. The effect of anthropogenic sulfate and soot aerosol on the clear sky planetary radiation budget. Geophys. Res. Lett. 22 (5):603–6. doi:10.1029/95GL00075.
  • He, X., C. C. Li, H. A. K. Lau, Z. Z. Deng, J. T. Mao, M. H. Wang, and X. Y. Liu. 2009. An intensive study of aerosol optical properties in Beijing urban area. Atmos. Chem. Phys. 9 (22):8903–15. doi:10.5194/acp-9-8903-2009.
  • IPCC. 2018. Proposed outline of the special report in 2018 on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change. IPCC - Sr15 2:17–20.
  • Jordan, C. E., B. E. Anderson, A. J. Beyersdorf, C. A. Corr, J. E. Dibb, M. E. Greenslade, R. F. Martin, R. H. Moore, E. Scheuer, M. A. Shook, et al. 2015. Spectral aerosol extinction (SpEx): A new instrument for in situ ambient aerosol extinction measurements across the UV/visible wavelength range. Atmos. Meas. Tech. 8 (11):4755–71. doi:10.5194/amt-8-4755-2015.
  • Keller-Rudek, H., G. K. Moortgat, R. Sander, and R. Sörensen. 2013. The MPI-Mainz UV/VIS spectral atlas of gaseous molecules of atmospheric interest. Earth Syst. Sci. Data 5 (2):365–73. doi:10.5194/essd-5-365-2013.
  • Langridge, J. M., T. Laurila, R. S. Watt, R. L. Jones, C. F. Kaminski, and J. Hult. 2008. Cavity enhanced absorption spectroscopy of multiple trace gas species using a supercontinuum radiation source. Opt. Express 16 (14):10178–88. doi:10.1364/OE.16.010178.
  • Laven, P. 2003. Simulation of rainbows, coronas, and glories by use of Mie theory. Appl. Opt. 42 (3):436–44. doi:10.1364/AO.42.000436.
  • Lewis, K., W. P. Arnott, H. Moosmüller, and C. E. Wold. 2008. Strong spectral variation of biomass smoke light absorption and single scattering albedo observed with a novel dual-wavelength photoacoustic instrument. J. Geophys. Res. 113 (D16):1–14. doi:10.1029/2007JD009699.
  • Massoli, P., P. L. Kebabian, T. B. Onasch, F. B. Hills, and A. Freedman. 2010. Aerosol light extinction measurements by Cavity Attenuated Phase Shift (CAPS) spectroscopy: Laboratory validation and field deployment of a compact aerosol particle extinction monitor. Aerosol Sci. Technol. 44 (6):428–35. doi:10.1080/02786821003716599.
  • Mätzler, C. 2002. MATLAB functions for Mie scattering and absorption. Research Report 2002–08, Institute of Applied Physics, University of Bern.
  • Michel Flores, J., R. Z. Bar-Or, N. Bluvshtein, A. Abo-Riziq, A. Kostinski, S. Borrmann, I. Koren, I. Koren, and Y. Rudich. 2012. Absorbing aerosols at high relative humidity: Linking hygroscopic growth to optical properties. Atmos. Chem. Phys. 12 (12):5511–21. doi:10.5194/acp-12-5511-2012.
  • Moosmüller, H., R. K. Chakrabarty, K. M. Ehlers, and W. P. Arnott. 2011. Absorption Ångström coefficient, brown carbon, and aerosols: Basic concepts, bulk matter, and spherical particles. Atmos. Chem. Phys. 11 (3):1217–25. doi:10.5194/acp-11-1217-2011.
  • Moosmüller, H., R. Varma, and W. P. Arnott. 2005. Cavity ring-down and cavity-enhanced detection techniques for the measurement of aerosol extinction. Aerosol Sci. Technol. 39 (1):30–9. doi:10.1080/027868290903880.
  • Prakash, N., A. Ramachandran, R. Varma, J. Chen, C. Mazzoleni, and K. Du. 2018. Near-infrared incoherent broadband cavity enhanced absorption spectroscopy (NIR-IBBCEAS) for detection and quantification of natural gas components. Analyst 143 (14):3284–91. doi:10.1039/C8AN00819A.
  • Querry, M. 1987. Optical constants of minerals and other materials from the millimeter to the ultraviolet, CRDEC-CR-88009, U.S. Army Chemical Research, Development and Engineering Center, Aberdeen proving ground, Maryland, 21010-5423.
  • Riziq, A. A., C. Erlick, E. Dinar, and Y. Rudich. 2007. Optical properties of absorbing and non-absorbing aerosols retrieved by cavity ring down (CRD) spectroscopy. Atmos. Chem. Phys. 7 (6):1523–36. doi:10.5194/acp-7-1523-2007.
  • Roy, A., P. Leproux, P. Roy, J.-L. Auguste, and V. Couderc. 2007. Supercontinuum generation in a nonlinear Yb-doped, double-clad, microstructured fiber. J. Opt. Soc. Am. B 24 (4):788–91. doi:10.1364/JOSAB.24.000788.
  • Ruby, M. G., and A. P. Waggoner. 1981. Intercomparison of integrating nephelometer measurements. Environ. Sci. Technol. 15 (1):109–13. doi:10.1021/es00083a014.
  • Russell, P. B., R. W. Bergstrom, Y. Shinozuka, A. D. Clarke, P. F. Decarlo, J. L. Jimenez, J. M. Livingston, J. Redemann, O. Dubovik, and A. Strawa. 2010. Absorption Angstrom exponent in AERONET and related data as an indicator of aerosol composition. Atmos. Chem. Phys. 10 (3):1155–69. doi:10.5194/acp-10-1155-2010.
  • Ruth, A. A., S. Dixneuf, and J. Orphal. 2015. Laser-induced plasmas in ambient air for incoherent broadband cavity-enhanced absorption spectroscopy. Opt. Express 23 (5):6092. doi:10.1364/OE.23.006092.
  • Sanford, T. J., D. M. Murphy, D. S. Thomson, R. W. Fox, T. J. Sanford, D. M. Murphy, D. S. Thomson, R. W. Fox, T. J. Sanford, D. M. Murphy, et al. 2008. Albedo measurements and optical sizing of single aerosol particles. Aerosol Sci. Technol. 42 (11):958–69. doi:10.1080/02786820802363827.
  • Schnaiter, M., H. Horvath, O. Möhler, K. H. Naumann, H. Saathoff, and O. W. Schöck. 2003. UV-VIS-NIR spectral optical properties of soot and soot-containing aerosols. J. Aerosol Sci. 34 (10):1421–44. doi:10.1016/S0021-8502(03)00361-6.
  • Sharma, N., I. J. Arnold, H. Moosmüller, W. P. Arnott, and C. Mazzoleni. 2013. Photoacoustic and nephelometric spectroscopy of aerosol optical properties with a supercontinuum light source. Atmos. Meas. Tech. 6 (12):3501–13. doi:10.5194/amt-6-3501-2013.
  • Sheridan, P. J., W. Patrick Arnott, J. A. Ogren, E. Andrews, D. B. Atkinson, D. S. Covert, H. Moosmüller, A. Petzold, B. Schmid, A. W. Strawa, et al. 2005. The Reno aerosol optics study: An evaluation of aerosol absorption measurement methods. Aerosol Sci. Technol. 39 (1):1–16. doi:10.1080/027868290901891.
  • Suhail, K., M. George, S. Chandran, R. Varma, D. S. Venables, M. Wang, and J. Chen. 2019. Open path incoherent broadband cavity-enhanced measurements of NO3 radical and aerosol extinction in the North China Plain. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 208:24–31. doi:10.1016/j.saa.2018.09.023.
  • Thalman, R., and R. Volkamer. 2010. Inherent calibration of a blue LED-CE-DOAS instrument to measure iodine oxide, glyoxal, methyl glyoxal, nitrogen dioxide, water vapour and aerosol extinction in open cavity mode. Atmos. Meas. Tech. 3 (6):1797–814. doi:10.5194/amt-3-1797-2010.
  • Thalman, R., K. J. Zarzana, M. A. Tolbert, and R. Volkamer. 2014. Rayleigh scattering cross-section measurements of nitrogen, argon, oxygen and air. J. Quant. Spectrosc. Radiat. Transf. 147:171–7. doi:10.1016/j.jqsrt.2014.05.030.
  • Valenzuela, A., F. J. Olmo, H. Lyamani, M. Antón, G. Titos, A. Cazorla, and L. Alados-Arboledas. 2015. Aerosol scattering and absorption Angström exponents as indicators of dust and dust-free days over Granada (Spain). Atmos. Res. 154:1–13. doi:10.1016/j.atmosres.2014.10.015.
  • Varma, R. M., S. M. Ball, T. Brauers, H.-P. Dorn, U. Heitmann, R. L. Jones, U. Platt, D. Pöhler, A. A. Ruth, A. J. L. Shillings, et al. 2013. Light extinction by secondary organic aerosol : An intercomparison of three broadband cavity spectrometers. Atmos. Meas. Tech. 6 (11):3115–30. doi:10.5194/amt-6-3115-2013.
  • Varma, R. M., D. S. Venables, A. A. Ruth, U. Heitmann, E. Schlosser, and S. Dixneuf. 2009. Long optical cavities for open-path monitoring of atmospheric trace gases and aerosol extinction. Appl. Opt. 48 (4):B159–171. doi:10.1364/AO.48.00B159.
  • Venables, D. 2016. Spectroscopic measurement of pollutant gases. Compr. Anal. Chem. 73:295–319.
  • Venables, D., T. Gherman, J. Orphal, J. C. Wenger, and A. A. Ruth. 2006. High sensitivity in-situ monitoring of NO3 in an atmospheric simulation chamber using incoherent broadband spectroscopy. Environ. Sci. Technol. 40 (21):6758–63. doi:10.1021/es061076j.
  • Virkkula, A., N. C. Ahlquist, D. S. Covert, P. J. Sheridan, W. P. Arnott, and J. A. Ogren. 2005. A three-wavelength optical extinction cell for measuring aerosol light extinction and its application to determining light absorption coefficient. Aerosol Sci. Technol. 39 (1):52–67. doi:10.1080/027868290901918.
  • Wang, L., W. G. Wang, and M. F. Ge. 2012. Extinction efficiencies of mixed aerosols measured by aerosol cavity ring down spectrometry. Chin. Sci. Bull. 57 (20):2567–73. doi:10.1007/s11434-012-5146-7.
  • Washenfelder, R. A., J. M. Flores, C. A. Brock, S. S. Brown, and Y. Rudich. 2013. Broadband measurements of aerosol extinction in the ultraviolet spectral region. Atmos. Meas. Tech. 6 (4):861–77. doi:10.5194/amt-6-861-2013.
  • Washenfelder, R. A., A. O. Langford, H. Fuchs, and S. S. Brown. 2008. Measurement of glyoxal using an incoherent broadband cavity enhanced absorption spectrometer. Atmos. Chem. Phys. Discuss. 8 (4):16517–53. doi:10.5194/acpd-8-16517-2008.
  • Won Kim, K. 2015. Optical properties of size-resolved aerosol chemistry and visibility variation observed in the urban site of Seoul, Korea. Aerosol Air Qual. Res. 15 (1):271–83. doi:10.4209/aaqr.2013.11.0347.
  • Xiao, S., Q. Y. Wang, J. J. Cao, R. Huang, W. D. Chen, Y. M. Han, H. M. Xu, S. X. Liu, Y. Q. Zhou, P. Wang, et al. 2014. Long-term trends in visibility and impacts of aerosol composition on visibility impairment in Baoji. China Atmos. Res. 149:88–95. doi:10.1016/j.atmosres.2014.06.006.
  • Zhang, X., Y. H. Lin, J. D. Surratt, P. Zotter, A. S. H. Prévôt, and R. J. Weber. 2011. Light-absorbing soluble organic aerosol in Los Angeles and Atlanta: A contrast in secondary organic aerosol. Geophys. Res. Lett. 38 (21):5. doi:10.1029/2011GL049385.
  • Zhao, W., M. Dong, W. Chen, X. Gu, C. Hu, X. Gao, W. Huang, and W. Zhang. 2013. Wavelength-resolved optical extinction measurements of aerosols using broad-band cavity-enhanced absorption spectroscopy over the spectral range of 445 − 480 nm. Anal. Chem. 85 (4):2260–8. doi:10.1021/ac303174n.
  • Zhao, W., X. Xu, M. Dong, W. Chen, X. Gu, C. Hu, Y. Huang, X. Gao, W. Huang, and W. Zhang. 2014. Development of a cavity-enhanced aerosol albedometer. Atmos. Meas. Tech. 7 (8):2551–66. doi:10.5194/amt-7-2551-2014.
  • Zhou, J., X. Xu, W. Zhao, B. Fang, Q. Liu, Y. Cai, D. S. Venables, and W. Chen. 2020. Simultaneous measurement of the relative humidity dependent aerosol light extinction, scattering, absorption and single-scattering albedo with a humidified cavity-enhanced albedometer. Atmos. Meas. Tech. Discuss. 30:1–22.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.