4,371
Views
30
CrossRef citations to date
0
Altmetric
Original Articles

Effects of propylene glycol, vegetable glycerin, and nicotine on emissions and dynamics of electronic cigarette aerosols

, , &
Pages 1270-1281 | Received 11 Oct 2019, Accepted 12 May 2020, Published online: 08 Jun 2020

References

  • Abramovitz, A., A. McQueen, R. E. Martinez, B. J. Williams, and W. Sumner. 2015. Electronic cigarettes: The nicotyrine hypothesis. Med. Hypotheses. 85 (3):305–10. doi:10.1016/j.mehy.2015.06.002.
  • Adroit Market Research. 2018. Global e-cigarette market size 2017 by type (disposable, rechargeable, modular), by region and forecast 2018 to 2025.
  • Baassiri, M., S. Talih, R. Salman, N. Karaoghlanian, R. Saleh, R. E. Hage, N. Saliba, and A. Shihadeh. 2017. Clouds and “throat hit”: Effects of liquid composition on nicotine emissions and physical characteristics of electronic cigarette aerosols. Aerosol Sci. Technol. 51 (11):1231–9. doi:10.1080/02786826.2017.1341040.
  • Baweja, R., K. M. Curci, J. Yingst, S. Veldheer, S. Hrabovsky, S. J. Wilson, T. T. Nichols, T. Eissenberg, and J. Foulds. 2016. Views of experienced electronic cigarette users. Addict. Res. Theory. 24 (1):80–8. doi:10.3109/16066359.2015.1077947.
  • Behar, R. Z., M. Hua, and P. Talbot. 2015. Puffing topography and nicotine intake of electronic cigarette users. Plos One. 10 (2):e0117222. doi:10.1371/journal.pone.0117222.
  • Breland, A., E. Soule, A. Lopez, C. Ramoa, A. El-Hellani, and T. Eissenberg. 2017. Electronic cigarettes: What are they and what do they do? Ann. N. Y. Acad. Sci. 1394 (1):5–30. doi:10.1111/nyas.12977.
  • Chun, L. F., F. Moazed, C. S. Calfee, M. A. Matthay, and J. E. Gotts. 2017. Pulmonary toxicity of e-cigarettes. Am. J. Physiol. Lung Cell Mol. Physiol. 313 (2):L193–L206. doi:10.1152/ajplung.00071.2017.
  • Cullen, K. A., B. K. Ambrose, A. S. Gentzke, B. J. Apelberg, A. Jamal, and B. A. King. 2018. Notes from the field: Use of electronic cigarettes and any tobacco product among middle and high school students - United States, 2011–2018. MMWR. Morb. Mortal. Wkly. Rep. 67 (45):1276–7. doi:10.15585/mmwr.mm6745a5.
  • Dockery, D. W., and J. D. Spengler. 1981. Indoor-outdoor relationships of respirable sulfates and particles. Atmos. Environ. 15 (3):335–43. doi:10.1016/0004-6981(81)90036-6.
  • El-Hellani, A., R. El-Hage, R. Baalbaki, R. Salman, S. Talih, A. Shihadeh, and N. A. Saliba. 2015. Free-base and protonated nicotine in electronic cigarette liquids and aerosols. Chem. Res. Toxicol. 28 (8):1532–7. doi:10.1021/acs.chemrestox.5b00107.
  • El-Hellani, A., R. Salman, R. El-Hage, S. Talih, N. Malek, R. Baalbaki, N. Karaoghlanian, R. Nakkash, A. Shihadeh, and N. A. Saliba. 2018. Nicotine and carbonyl emissions from popular electronic cigarette products: Correlation to liquid composition and design characteristics. Nicotine Tob. Res. 20 (2):215–23. doi:10.1093/ntr/ntw280.
  • Etter, J. F., E. Zather, and S. Svensson. 2013. Analysis of refill liquids for electronic cigarettes. Addiction 108 (9):1671–9. doi:10.1111/add.12235.
  • Farsalinos, K. E., G. Romagna, D. Tsiapras, S. Kyrzopoulos, and V. Voudris. 2013. Evaluation of electronic cigarette use (vaping) topography and estimation of liquid consumption: Implications for research protocol standards definition and for public health authorities' regulation. Int. J. Environ. Res. Public Health 10 (6):2500–14. doi:10.3390/ijerph10062500.
  • Feng, Y., C. Kleinstreuer, and A. Rostami. 2015. Evaporation and condensation of multicomponent electronic cigarette droplets and conventional cigarette smoke particles in an idealized g3-g6 triple bifurcating unit. J. Aerosol Sci. 80:58–74. doi:10.1016/j.jaerosci.2014.11.002.
  • Flora, J. W., N. Meruva, C. B. Huang, C. T. Wilkinson, R. Ballentine, D. C. Smith, M. S. Werley, and W. J. McKinney. 2016. Characterization of potential impurities and degradation products in electronic cigarette formulations and aerosols. Regul. Toxicol. Pharmacol. 74:1–11. doi:10.1016/j.yrtph.2015.11.009.
  • Floyd, E. L., L. Queimado, J. Wang, J. L. Regens, and D. L. Johnson. 2018. Electronic cigarette power affects count concentration and particle size distribution of vaping aerosol. Plos One 13 (12):e0210147. doi:10.1371/journal.pone.0210147.
  • Fung, C. C. D., S. Shu, and Y. Zhu. 2014. Ultrafine particles generated from coloring with scented markers in the presence of ozone. Indoor Air. 24 (5):503–10. doi:10.1111/ina.12103.
  • Fuoco, F. C., G. Buonanno, L. Stabile, and P. Vigo. 2014. Influential parameters on particle concentration and size distribution in the mainstream of e-cigarettes. Environ. Pollut. 184:523–9. doi:10.1016/j.envpol.2013.10.010.
  • Geiss, O., I. Bianchi, F. Barahona, and J. Barrero-Moreno. 2015. Characterisation of mainstream and passive vapours emitted by selected electronic cigarettes. Int. J. Hyg. Environ. Health. 218 (1):169–80. doi:10.1016/j.ijheh.2014.10.001.
  • Geiss, O., I. Bianchi, and J. Barrero-Moreno. 2016. Correlation of volatile carbonyl yields emitted by e-cigarettes with the temperature of the heating coil and the perceived sensorial quality of the generated vapours. Int. J. Hyg. Environ. Health. 219 (3):268–77. doi:10.1016/j.ijheh.2016.01.004.
  • Gong, L. W., B. Xu, and Y. F. Zhu. 2009. Ultrafine particles deposition inside passenger vehicles. Aerosol. Sci. Technol. 43 (6):544–53. doi:10.1080/02786820902791901.
  • Goniewicz, M. L., R. Boykan, C. R. Messina, A. Eliscu, and J. Tolentino. 2019. High exposure to nicotine among adolescents who use juul and other vape pod systems (‘pods’). Tob. Control. 28 (6):676–7. doi:10.1136/tobaccocontrol-2018-054565.
  • Goniewicz, M. L., and L. Lee. 2015. Electronic cigarettes are a source of thirdhand exposure to nicotine. Nicotine Tob. Res. 17 (2):256–8. doi:10.1093/ntr/ntu152.
  • Hartmann-Boyce, J., R. Begh, and P. Aveyard. 2018. Electronic cigarettes for smoking cessation. BMJ 360:j5543. doi:10.1136/bmj.j5543.
  • He, C. R., L. D. Morawska, J. Hitchins, and D. Gilbert. 2004. Contribution from indoor sources to particle number and mass concentrations in residential houses. Atmos. Environ. 38 (21):3405–15. doi:10.1016/j.atmosenv.2004.03.027.
  • Hinds, W. C. 1999. Aerosol technology: Properties, behavior, and measurement of airborne particles. USA: Wiley.
  • Hua, M., H. Yip, and P. Talbot. 2013. Mining data on usage of electronic nicotine delivery systems (ends) from youtube videos. Tob. Control. 22 (2):103–6. doi:10.1136/tobaccocontrol-2011-050226.
  • Huang, J., Z. Duan, J. Kwok, S. Binns, L. Vera, Y. Kim, G. Szczypka, and S. Emery. 2019. Vaping versus juuling: How the extraordinary growth and marketing of juul transformed the us retail e-cigarette market. Tob. Control. 28 (2):146–51. doi:10.1136/tobaccocontrol-2018-054382.
  • Ingebrethsen, B. J., S. K. Cole, and S. L. Alderman. 2012. Electronic cigarette aerosol particle size distribution measurements. Inhal. Toxicol. 24 (14):976–84. doi:10.3109/08958378.2012.744781.
  • Jenkins, R. A., R. H. Ilgner, B. A. Tomkins, and D. W. Peters. 2004. Development and application of protocols for the determination of response of real-time particle monitors to common indoor aerosols. J. Air Waste Manag. Assoc. 54 (2):229–41. doi:10.1080/10473289.2004.10470892.
  • Jensen, R. P., R. M. Strongin, and D. H. Peyton. 2017. Solvent chemistry in the electronic cigarette reaction vessel. Sci. Rep. 7:42549. doi:10.1038/srep42549.
  • Kim, H. J., and H. S. Shin. 2013. Determination of tobacco-specific nitrosamines in replacement liquids of electronic cigarettes by liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 1291:48–55. doi:10.1016/j.chroma.2013.03.035.
  • Kosmider, L., C. F. Kimber, J. Kurek, O. Corcoran, and L. E. Dawkins. 2018. Compensatory puffing with lower nicotine concentration e-liquids increases carbonyl exposure in e-cigarette aerosols. Nicotine Tob. Res. 20 (8):998–1003. doi:10.1093/ntr/ntx162.
  • Kosmider, L., A. Sobczak, M. Fik, J. Knysak, M. Zaciera, J. Kurek, and M. L. Goniewicz. 2014. Carbonyl compounds in electronic cigarette vapors: Effects of nicotine solvent and battery output voltage. Nicotine Tob. Res. 16 (10):1319–26. doi:10.1093/ntr/ntu078.
  • Layden, J. E., I. Ghinai, I. Pray, A. Kimball, M. Layer, M. W. Tenforde, L. Navon, B. Hoots, P. P. Salvatore, M. Elderbrook, et al. 2020. Pulmonary illness related to e-cigarette use in illinois and wisconsin—preliminary report. N Engl. J. Med. 382 (10):903–16. doi:10.1056/NEJMoa1911614.
  • Li, L., Y. Lin, T. Xia, and Y. Zhu. 2020. Effects of electronic cigarettes on indoor air quality and health. Annu. Rev. Public Health. 41:363–80. doi:10.1146/annurev-publhealth-040119-094043.
  • Liang, C. K., and J. F. Pankow. 1996. Gas/particle partitioning of organic compounds to environmental tobacco smoke: Partition coefficient measurements by desorption and comparison to urban particulate material. Environ. Sci. Technol. 30 (9):2800–5. doi:10.1021/es960050x.
  • Liu, J., D. Fung, J. Jiang, and Y. Zhu. 2014. Ultrafine particle emissions from essential-oil-based mosquito repellent products. Indoor Air. 24 (3):327–35. doi:10.1111/ina.12080.
  • Malas, M., J. van der Tempel, R. Schwartz, A. Minichiello, C. Lightfoot, A. Noormohamed, J. Andrews, L. Zawertailo, and R. Ferrence. 2016. Electronic cigarettes for smoking cessation: A systematic review. Nicotine Tob. Res. 18 (10):1926–36. doi:10.1093/ntr/ntw119.
  • Manigrasso, M., G. Buonanno, F. C. Fuoco, L. Stabile, and P. Avino. 2015. Aerosol deposition doses in the human respiratory tree of electronic cigarette smokers. Environ. Pollut. 196:257–67. doi:10.1016/j.envpol.2014.10.013.
  • Martuzevicius, D., T. Prasauskas, A. Setyan, G. O’Connell, R. Julien, S. Colard, and X. Cahours. 2019. Characterization of the spatial and temporal dispersion differences between exhaled e-cigarette mist and cigarette smoke. Nicotine Tob. Res. 21 (10):1371–7. doi:10.1093/ntr/nty1.
  • McAuley, T. R., P. K. Hopke, J. Zhao, and S. Babaian. 2012. Comparison of the effects of e-cigarette vapor and cigarette smoke on indoor air quality. Inhal. Toxicol. 24 (12):850–7. doi:10.3109/08958378.2012.724728.
  • Meng, Q., Y. Son, H. Kipen, D. Laskin, S. Schwander, and C. Delnevo. 2017. Particles released from primary e-cigarette vaping: Particle size distribution and particle deposition in the human respiratory tract. Am. J. Respir. Crit. Care Med. 195:A1023.
  • Mikheev, V. B., M. C. Brinkman, C. A. Granville, S. M. Gordon, and P. I. Clark. 2016. Real-time measurement of electronic cigarette aerosol size distribution and metals content analysis. Nicotine Tob. Res. 18 (9):1895–902. doi:10.1093/ntr/ntw128.
  • Mikheev, V. B., A. Ivanov, E. A. Lucas, P. L. South, H. O. Colijn, and P. I. Clark. 2018. Aerosol size distribution measurement of electronic cigarette emissions using combined differential mobility and inertial impaction methods: Smoking machine and puff topography influence. Aerosol. Sci. Technol. 52 (11):1233–48. doi:10.1080/02786826.2018.1513636.
  • Nguyen, C., L. Li, C. A. Sen, E. Ronquillo, and Y. Zhu. 2019. Fine and ultrafine particles concentrations in vape shops. Atmos. Environ. 211:159–69. doi: . doi:10.1016/j.atmosenv.2019.05.015.
  • Ogunwale, M. A., M. X. Li, M. V. R. Raju, Y. Z. Chen, M. H. Nantz, D. J. Conklin, and X. A. Fu. 2017. Aldehyde detection in electronic cigarette aerosols. Acs Omega. 2 (3):1207–14. doi:10.1021/acsomega.6b00489.
  • Polosa, R., and P. Caponnetto. 2016. The health effects of electronic cigarettes. N. Engl. J. Med. 375 (26):2608. doi:10.1056/NEJMc1613869.
  • Robinson, R. J., E. C. Hensel, P. N. Morabito, and K. A. Roundtree. 2015. Electronic cigarette topography in the natural environment. PloS One. 10 (6):e0129296. doi:10.1371/journal.pone.0129296.
  • Rossiter, W. J., M. Godette, P. W. Brown, and K. G. Galuk. 1985. An investigation of the degradation of aqueous ethylene-glycol and propylene-glycol solutions using ion chromatography. Solar Energy Mater. 11 (5–6):455–467. doi:10.1016/0165-1633(85)90016-4.
  • Schober, W., K. Szendrei, W. Matzen, H. Osiander-Fuchs, D. Heitmann, T. Schettgen, R. A. Jorres, and H. Fromme. 2014. Use of electronic cigarettes (e-cigarettes) impairs indoor air quality and increases feno levels of e-cigarette consumers. Int. J. Hyg. Environ. Health. 217 (6):628–637. doi:10.1016/j.ijheh.2013.11.003.
  • Schripp, T., D. Markewitz, E. Uhde, and T. Salthammer. 2013. Does e-cigarette consumption cause passive vaping? Indoor Air. 23 (1):25–31. doi:10.1111/j.1600-0668.2012.00792.x.
  • Schripp, T., M. Wensing, E. Uhde, T. Salthammer, C. He, and L. Morawska. 2008. Evaluation of ultrafine particle emissions from laser printers using emission test chambers. Environ. Sci. Technol. 42 (12):4338–4343. doi:10.1021/es702426m.
  • Scungio, M., L. Stabile, and G. Buonanno. 2018. Measurements of electronic cigarette-generated particles for the evaluation of lung cancer risk of active and passive users. J. Aerosol Sci. 115:1–11. doi:10.1016/j.jaerosci.2017.10.006.
  • Shi, S. S., S. H. Zhu, E. S. Lee, B. Zhao, and Y. F. Zhu. 2016. Performance of wearable ionization air cleaners: Ozone emission and particle removal. Aerosol Sci. Technol. 50 (3):211–221. doi:10.1080/02786826.2016.1139045.
  • Sleiman, M., J. M. Logue, V. N. Montesinos, M. L. Russell, M. I. Litter, L. A. Gundel, and H. Destaillats. 2016. Emissions from electronic cigarettes: Key parameters affecting the release of harmful chemicals. Environ. Sci. Technol. 50 (17):9644–9651. doi:10.1021/acs.est.6b01741.
  • Son, Y., O. Wackowski, C. Weisel, S. Schwander, G. Mainelis, C. Delnevo, and Q. Y. Meng. 2018. Evaluation of e-vapor nicotine and nicotyrine concentrations under various e-liquid compositions, device settings, and vaping topographies. Chem. Res. Toxicol. 31 (9):861–868. doi:10.1021/acs.chemrestox.8b00063.
  • Sosnowski, T. R., and M. Odziomek. 2018. Particle size dynamics: Toward a better understanding of electronic cigarette aerosol interactions with the respiratory system. Front. Physiol. 9:853. doi:10.3389/fphys.2018.00853.
  • Talih, S., Z. Balhas, R. Salman, R. El-Hage, N. Karaoghlanian, A. El-Hellani, M. Baassiri, E. Jaroudi, T. Eissenberg, N. Saliba, et al. 2017. Transport phenomena governing nicotine emissions from electronic cigarettes: Model formulation and experimental investigation. Aerosol Sci. Technol. 51 (1):1–11. doi:10.1080/02786826.2016.1257853.
  • Vo, U. U. T., and M. P. Morris. 2014. Nonvolatile, semivolatile, or volatile: Redefining volatile for volatile organic compounds. J. Air Waste Manag. Assoc. 64 (6):661–669. doi:10.1080/10962247.2013.873746.
  • Williams, M., A. Villarreal, K. Bozhilov, S. Lin, and P. Talbot. 2013. Metal and silicate particles including nanoparticles are present in electronic cigarette cartomizer fluid and aerosol. Plos One 8 (3):e57987–11. doi:10.1371/journal.pone.0057987.
  • Wright, T. P., C. Song, S. Sears, and M. D. Petters. 2016. Thermodynamic and kinetic behavior of glycerol aerosol. Aerosol. Sci. Technol. 50 (12):1385–1396. doi:10.1080/02786826.2016.1245405.
  • Yingst, J. M., S. Veldheer, S. Hrabovsky, T. T. Nichols, S. J. Wilson, and J. Foulds. 2015. Factors associated with electronic cigarette users' device preferences and transition from first generation to advanced generation devices. Nicotine Tob. Res. 17 (10):1242–1246. doi:10.1093/ntr/ntv052.
  • Yoong, S. L., E. Stockings, L. K. Chai, F. Tzelepis, J. Wiggers, C. Oldmeadow, C. Paul, A. Peruga, M. Kingsland, J. Attia, et al. 2018. Prevalence of electronic nicotine delivery systems (ends) use among youth globally: A systematic review and meta-analysis of country level data. Aust N Z J Public Health 42 (3):303–308. doi:10.1111/1753-6405.12777.
  • Zervas, E., E. Litsiou, K. Konstantopoulos, S. Poulopoulos, and P. Katsaounou. 2018. Physical characterization of the aerosol of an electronic cigarette: Impact of refill liquids. Inhal. Toxicol. 30 (6):218–223. doi:10.1080/08958378.2018.1500662.
  • Zhang, Q. F., and Y. F. Zhu. 2010. Measurements of ultrafine particles and other vehicular pollutants inside school buses in south texas. Atmos. Environ. 44 (2):253–261. doi:10.1016/j.atmosenv.2009.09.044.
  • Zhang, Y. P., W. Sumner, and D. R. Chen. 2013. In vitro particle size distributions in electronic and conventional cigarette aerosols suggest comparable deposition patterns. Nicotine Tob. Res. 15 (2):501–508. doi:10.1093/ntr/nts165.
  • Zhao, T., S. Shu, Q. Guo, and Y. Zhu. 2016. Effects of design parameters and puff topography on heating coil temperature and mainstream aerosols in electronic cigarettes. Atmos. Environ. 134:61–69. doi: . doi:10.1016/j.atmosenv.2016.03.027.
  • Zhao, T. K., C. Nguyen, C. H. Lin, H. R. Middlekauff, K. Peters, R. Moheimani, Q. J. Guo, and Y. F. Zhu. 2017. Characteristics of secondhand electronic cigarette aerosols from active human use. Aerosol. Sci. Technol. 51 (12):1368–1376. doi:10.1080/02786826.2017.1355548.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.