1,909
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Condensational growth of water droplets in an external electric field at different temperatures

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1556-1566 | Received 16 Mar 2020, Accepted 23 Jul 2020, Published online: 20 Aug 2020

References

  • Aktaev, N. E., A. A. Fedorets, E. Y. Bormashenko, and M. Nosonovsky. 2018. Langevin approach to modeling of small levitating ordered droplet clusters. J. Phys. Chem. Lett. 9 (14):3834–8. doi:10.1021/acs.jpclett.8b01693.
  • Amiri, M. C., J. Pourabadeh, and M. A. A. Khatibi. 2002. Effects of electric field on condensation. J. Appl. Sci. 2 (2):136–40. doi:10.3923/jas.2002.136.140.
  • Andreev, S. N., and D. N. Gabyshev. 2018. Oscillatory motion of microdroplets of a Droplet cluster in a linearly nonuniform electric field. Bull. Lebedev Phys. Inst. 45 (9):257–62. doi:10.3103/S1068335618090014.
  • Arinshtein, E. A., and A. A. Fedorets. 2010. Mechanism of energy dissipation in a droplet cluster. Jetp Lett. 92 (10):658–61. doi:10.1134/S0021364010220042.
  • Borman, V. D., B. I. Nikolaev, N. I. Nikolaev, and V. A. Chuzhinov. 1971. The influence of an electric field on the thermal diffusion coefficient for gases. JETP 33 (5):881. http://www.jetp.ac.ru/cgi-bin/r/index/e/33/5/p881?a=list.
  • Butt, H.-J., M. B. Untch, A. Golriz, S. A. Pihan, and R. Berger. 2011. Electric-field-induced condensation: an extension of the Kelvin equation. Phys Rev E: Stat Nonlin Soft Matter Phys. 83 (6 Pt 1):061604. doi:10.1103/PhysRevE.83.061604.
  • Cruzat, D., and C. Jerez-Hanckes. 2018. Electrostatic fog water collection. J. Electrostat. 96:128–33. doi:10.1016/j.elstat.2018.10.009.
  • Damak, M., and K. K. Varanasi. 2018. Electrostatically driven fog collection using space charge injection. Sci. Adv. 4 (6):eaao53232018. doi:10.1126/sciadv.aao5323.
  • Fedorets, A. A. 2004. Droplet cluster. JETP Lett. 79 (8):373. doi:10.1134/1.1772434.
  • Fedorets, A. A. 2012. Mechanism of Stabilization of a Droplet Cluster above the Liquid–Gas Interface. Tech. Phys. Lett. 38 (11):988–90. doi:10.1134/S1063785012110077.
  • Fedorets, A. A., N. E. Aktaev, and L. A. Dombrovsky. 2018. Suppression of the condensational growth of droplets of a levitating cluster using the modulation of the laser heating power. Int. J. Heat Mass Transf. 127:660–4. doi:10.1016/j.ijheatmasstransfer.2018.07.055.
  • Fedorets, A. A., N. E. Aktaev, D. N. Gabyshev, E. Bormashenko, L. A. Dombrovsky, and M. Nosonovsky. 2019a. Oscillatory motion of a Droplet cluster. J. Phys. Chem. C 123 (38):23572–6. doi:10.1021/acs.jpcc.9b08194.
  • Fedorets, A. A., E. Bormashenko, L. A. Dombrovsky, and M. Nosonovsky. 2019c. Droplet clusters: nature-inspired biological reactors and aerosols. Philos. Trans. A Math. Phys. Eng. Sci. 377 (2150):20190121doi:10.1098/rsta.2019.0121.
  • Fedorets, A. A., and L. A. Dombrovsky. 2017. Generation of levitating droplet clusters above the locally heated water surface: a thermal analysis of modified installation. Int. J. Heat Mass Transf. 104:1268–74. doi:10.1016/j.ijheatmasstransfer.2016.09.087.
  • Fedorets, A. A., L. A. Dombrovsky, E. Bormashenko, and M. Nosonovsky. 2019b. On relative contribution of electrostatic and aerodynamic effects to dynamics of a levitating droplet cluster. Int. J. Heat Mass Transf. 133:712–7. doi:10.1016/j.ijheatmasstransfer.2018.12.160.
  • Fedorets, A. A., L. A. Dombrovsky, D. N. Gabyshev, E. Bormashenko, and M. Nosonovsky. 2020. Effect of external electric field on dynamics of levitating water droplets. Int. J. Thermal Sci. 153:106375–83. doi:10.1016/j.ijthermalsci.2020.106375.
  • Fedorets, A. A., L. A. Dombrovsky, and P. I. Ryumin. 2017b. Expanding the temperature range for generation of droplet clusters over the locally heated water surface. Int. J. Heat Mass Transf. 113:1054–8. doi:10.1016/j.ijheatmasstransfer.2017.06.015.
  • Fedorets, A. A., M. Frenkel, E. Bormashenko, and M. Nosonovsky. 2017c. Small levitating ordered droplet clusters: stability, symmetry, and Voronoi entropy. J. Phys. Chem. Lett. 8 (22):5599–602. doi:10.1021/acs.jpclett.7b02657.
  • Fedorets, A. A., M. Frenkel, E. Shulzinger, L. A. Dombrovsky, E. Bormashenko, and M. Nosonovsky. 2017a. Self-assembled levitating clusters of water droplets: pattern-formation and stability. Sci. Rep. 7 (1):1888doi:10.1038/s41598-017-02166-5.
  • Fedorets, A. A., I. V. Marchuk, and O. A. Kabov. 2014. Application of a Droplet cluster to visualize microscale gas and liquid flows. Jetp Lett. 99 (5):266–9. doi:10.1134/S0015462808060124.
  • Foote, E. 1878. Electricity in thunder-storms. Popular Sci. Mon. 13 (689):689–93.
  • Franklin, B. 1751. Experiments and observations on electricity, 43. St. John's Gate, London: E. Cave.
  • Frenkel, I. I. 1963. Theory and phenomena of atmospheric electricity. Wright-Patterson Air Force Base, Translation Division, Foreign Technology Division.
  • Frössling, N. 1938. Über die Verdunstung fallender Tropfen. Gerlands Beiträge zur Geophysik 52:170–216.
  • Fuchs, N. A. 1959. Evaporation and droplet growth in gaseous medium, ed. R. S. Bradley. Pergamon.
  • Gabyshev, D. N. 2018. Damping oscillations of microdroplets of a Droplet cluster in an external electric field. Phys. Wave Phen. 26 (3):221–33. doi:10.3103/S1541308X1803007X.
  • Gabyshev, D. N., A. A. Fedorets, N. E. Aktaev, O. Klemm, and S. N. Andreev. 2019. Acceleration of the condensational growth of water droplets in an external electric field. J. Aerosol Sci. 135:103–12. doi:10.1016/j.jaerosci.2019.06.002.
  • Gebhart, B., Y. Jaluria, R. L. Mahajan, and B. Sammakia. 1988. Buoyancy-induced flows and transport. Hemisphere, Washington: Springer.
  • Guerrini, A., and G. Murino. 1990. Electric Forces and Physics of Clouds. Il Nuovo Cimento C 13 (3):663–8. doi:10.1007/BF02507630.
  • IAPWS. 1997. Release on the static dielectric constant of ordinary water substance for temperatures from 238K to 873K and pressures up to 1000 MPa. IAPWS R8-97. http://www.iapws.org/relguide/Dielec.html
  • Isard, J. O. 1977. Calculation of the influence of an electric field on the free energy of formation of a nucleus. Philos. Mag. 35 (3):817–9. doi:10.1080/14786437708236010.
  • Jackson, J. D. 1962. Classical electrodynamics. New York: Wiley. doi:10.1063/1.3057859.
  • Jakubczyk, D., M. Kolwas, G. Derkachov, K. Kolwas, and M. Zientara. 2012. Evaporation of Micro-Droplets: the “Radius-Square-Law” Revised. Acta Phys. Pol. A 122 (4):709–16. doi:10.12693/APhysPolA.122.709.
  • Jennings, S. G. 1988. The mean free path in air. J. Aerosol Sci. 19 (2):159–66. doi:10.1016/0021-8502(88)90219-4.
  • Kelvin, W. T. 1872. Royal Institution Friday evening lecture May. 18, 1860. In Reprint of Papers on electrostatics and magnetism. New York: Macmillan.
  • Kulmala, M., and T. Vesala. 1991. Condensation in the continuum regime. J. Aerosol Sci. 22 (3):337–46. doi:10.1016/S0021-8502(05)80011-4.
  • Lenard, P. 1892. Ueber die Electricität der Wasserfälle. Ann. Phys. Chem. 282 (8):584–636. doi:10.1002/andp.18922820805.
  • Leontovich, M. A. 1983. Introduction to thermodynamics. Statistical physics. Moscow: Nauka Press, 136–40. [in Russian].
  • Maxwell, J. C. 1890. Theory of the wet bulb thermometer. In Scientific papers of James Clerk Maxwell, ed. W. D. Niven, vol. 2, 636–640. Cambridge: C. J. Clay, M. A. and Sons, University Press.
  • Mordy, W. 1959. Computation of the growth by condensation of a population PF cloud Droplets. Tellus 11 (1):16–44. doi:10.3402/tellusa.v11i1.9283.
  • Murino, G. 1979. Influence of electric field on condensation of water vapour. South African Journal of Physics 2; 113.
  • Nir, S., S. Adams, and R. Rein. 1973. Polarizability calculations on water, hydrogen, oxygen, and carbon dioxide. J. Chem. Phys. 59 (6):3341–55. doi:10.1063/1.1680478.
  • Pruppacher, H. R., and J. D. Klett. 2010. Microphysics of clouds and precipitation. Dordrecht: Springer.
  • Reid, R. C., J. M. Prausnitz, and B. E. Poling. 1987. The properties of gases and liquids. New York: McGraw-Hill.
  • Reznikov, M. 2015. Electrically enhanced condensation I: effects of corona discharge. IEEE Trans. Ind. Appl. 51 (2):1137–45. doi:10.1109/TIA.2014.2354734.
  • Saha, S. K., H. Ranjan, M. S. Emani, and A. K. Bharti. 2020. Electric fields, additives and simultaneous heat and mass transfer in heat transfer enhancement. Cham, Switzerland:Springer.
  • Saranin, V. A. 1998. Possibility of the levitation of Droplets in the atmosphere when they are charged by induction in an electric field under nonuniform evaporation conditions. Tech. Phys. 43 (2):145–50. doi:10.1134/1.1258958.
  • Shahriari, A., P. Birbarah, J. Oh, N. Miljkovic, and V. Bahadur. 2017. Electric field–based control and enhancement of boiling and condensation. Nanoscale Microscale Thermophys. Eng. 21 (2):102–21. doi:10.1080/15567265.2016.1253630.
  • Sharma, M. 2010. Role of electric field in the nucleation phenomenon. PhD thesis, Chaudhary Charan Singh University. http://shodhganga.inflibnet.ac.in/handle/10603/45166.
  • Shavlov, A. V. 2008. The mechanism of interphase electrization at evaporation and vapor growth of ice and water. Earth's Cryosphere 12 (2):52.
  • Shavlov, A. V., V. A. Dzhumandzhi, and S. N. Romanyuk. 2011. Electrical properties of water drops inside the dropwise cluster. Phys. Lett. A 376 (1):39–45. doi:10.1016/j.physleta.2011.10.032.
  • Shavlov, A. V., V. A. Dzhumandzhi, and A. A. Yakovenko. 2018. Charge separation at the evaporation (condensation) front of water and ice. Charging of spherical Droplets. Tech. Phys. 63 (4):482–90. doi:10.1134/S1063784218040205.
  • Shishkin, N. S. 1951. Studies of the formation of summer rainfall and lightning electricity. Phys. Usp. 45:313. doi:10.3367/UFNr.0045.195111a.0313.[in Russian]
  • Shishkin, N. S. 1954. Clouds, precipitation, and thunderstorm electricity. Moscow: GITTL. [in Russian].
  • Singh, N., and A. Kumar. 2003. Equivalence between external electric field with temperature and supersaturation in nucleation process. Indian J. Radio Space Phys. 32 (6):379–81.
  • Singh, N., and D. Singh. 2004. Polarizability affecting nucleation of water vapour condensation and ice glaciation in presence of external electric field. Indian J. Radio Space Phys. 33 (1):43–9.
  • Sivukhin, D. V. 1977. General physics course. V. 3. Electricity. Moscow: Nauka, 95–6. [in Russian].
  • Someshwar, A. V., and B. W. Wilkinson. 1985. Study of electric field-induced effects on water vapor adsorption in porous adsorbents. Ind. Eng. Chem. Fund. 24 (2):215–20. doi:10.1021/i100018a014.
  • Vargaftik, N. B. 1972. Thermophysical properties of gases and liquids: handbook. Moscow: Nauka. [in Russian]
  • Vorob’ev, V. S., and S. P. Malyshenko. 2001. New phase nucleation in electric fields. J. Exp. Theor. Phys. 93 (4):753–9. doi:10.1134/1.1420443.
  • Warshavsky, V. B., and A. K. Shchekin. 1999. The effects of external electric field in thermodynamics of formation of dielectric droplet. Colloids Surf. A. 148 (3):283–90. doi:10.1016/S0927-7757(98)00769-9.
  • Wei, S., C. Zhong, and H. Su-Yi. 2005. Molecular dynamics simulation of liquid water under the influence of an external electric field. Mol. Simul. 31 (8):555–9. doi:10.1080/0892702500138483.
  • Zeleny, J. 1917. Instability of electrified liquid surfaces. Phys. Rev. 10 (1):1–6. doi:10.1103/PhysRev.10.1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.