3,269
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

Determination of the collision rate coefficient between charged iodic acid clusters and iodic acid using the appearance time method

ORCID Icon, , , , , , , , , , , ORCID Icon, ORCID Icon, , , , , ORCID Icon, , , ORCID Icon, , , , ORCID Icon, , , ORCID Icon, , , , , , , , , , , , , , , , , , , ORCID Icon, , , , , , ORCID Icon, , ORCID Icon, , , , , , , , ORCID Icon, , , , , ORCID Icon, , , , , , , , ORCID Icon, , & ORCID Icon show all
Pages 231-242 | Received 27 Jun 2020, Accepted 09 Oct 2020, Published online: 11 Nov 2020

References

  • Ahonen, L., C. Li, J. Kubecka, S. Iyer, H. Vehkamaki, T. Petäjä, M. Kulmala, and C. J. Hogan. 2019. Ion mobility-mass spectrometry of iodine pentoxide-iodic acid hybrid cluster anions in dry and humidified atmosphere. J. Phys. Chem. Lett. 10 (8):1935–41. doi:https://doi.org/10.1021/acs.jpclett.9b00453.
  • Balaj, O. P., I. Balteanu, T. T. J. Roßteuscher, M. K. Beyer, and V. E. Bondybey. 2004a. Catalytic oxidation of CO with N2O on gas-phase platinum clusters. Angew. Chem. 116 (47):6681–4.
  • Balaj, O. P., C.-K. Siu, I. Balteanu, M. K. Beyer, and V. E. Bondybey. 2004b. Reactions of hydrated electrons (H2O)n- with carbon dioxide and molecular oxygen: Hydration of the CO2- and O2- ions. Chemistry 10 (19):4822–30. doi:https://doi.org/10.1002/chem.200400416.
  • Chai, J.-D., and M. Head-Gordon. 2008. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys. Chem. Chem. Phys. 10 (44):6615–20. doi:https://doi.org/10.1039/b810189b.
  • Cuevas, C. A., N. Maffezzoli, J. P. Corella, A. Spolaor, P. Vallelonga, H. A. Kjaer, M. Simonsen, M. Winstrup, B. Vinther, C. Horvat, et al. 2018. Rapid increase in atmospheric iodine levels in the North Atlantic since the mid-20th century. Nat. Commun. 9 (1):1452. doi:https://doi.org/10.1038/s41467-018-03756-1.
  • Dunning, T. H., and P. J. Hay. 1977. Gaussian basis sets for molecular calculations. In Methods of electronic structure theory, ed. H. F. Schaefer, 1–27. Boston, MA: Springer US.
  • Feller, D. 1996. The role of databases in support of computational chemistry calculations. J. Comput. Chem 17 (13):1571–86.
  • Friedlander, S. K. 2000. Smoke, dust, and haze: Fundamentals of aerosol dynamics. New York, NY: Oxford University Press.
  • Frisch, M. J., G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, et al. 2009. Gaussian 09, revision D.01. Wallingford CT: Gaussian, Inc.
  • Froyd, K. D., and E. R. Lovejoy. 2003. Experimental thermodynamics of cluster ions composed of H2SO4 and H2O. 2. Measurements and ab initio structures of negative ions. J. Phys. Chem. A 107 (46):9812–24.
  • Fuentealba, P., H. Preuss, H. Stoll, and L. Von Szentpály. 1982. A proper account of core-polarization with pseudopotentials: Single valence-electron alkali compounds. Chem. Phys. Lett. 89 (5):418–22.
  • Gordon, H., J. Kirkby, U. Baltensperger, F. Bianchi, M. Breitenlechner, J. Curtius, A. Dias, J. Dommen, N. M. Donahue, E. M. Dunne, et al. 2017. Causes and importance of new particle formation in the present-day and preindustrial atmospheres. J. Geophys. Res. Atmos. 122 (16):8739–60.
  • Hu, S., and T. Su. 1986. Trajectory calculations of the effect of the induced dipole–induced dipole potential on ion–polar molecule collision rate constants. J. Chem. Phys. 85 (5):3127–8.
  • Iyer, S., F. Lopez-Hilfiker, B. H. Lee, J. A. Thornton, and T. Kurtén. 2016. Modeling the detection of organic and inorganic compounds using iodide-based chemical ionization. J. Phys. Chem. A 120 (4):576–87. doi:https://doi.org/10.1021/acs.jpca.5b09837.
  • Jokinen, T., M. Sipilä, H. Junninen, M. Ehn, G. Lönn, J. Hakala, T. Petäjä, R. L. Mauldin, M. Kulmala, and D. R. Worsnop. 2012. Atmospheric sulphuric acid and neutral cluster measurements using CI-APi-TOF. Atmos. Chem. Phys. 12 (9):4117–25. doi:https://doi.org/10.5194/acp-12-4117-2012.
  • Junninen, H., M. Ehn, T. Petäjä, L. Luosujärvi, T. Kotiaho, R. Kostiainen, U. Rohner, M. Gonin, K. Fuhrer, M. Kulmala, et al. 2010. A high-resolution mass spectrometer to measure atmospheric ion composition. Atmos. Meas. Tech. 3 (4):1039–53., doi:https://doi.org/10.5194/amt-3-1039-2010.
  • Kendall, R. A., T. H. Dunning, and R. J. Harrison. 1992. Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 96 (9):6796–806.
  • Kirkby, J., J. Curtius, J. Almeida, E. Dunne, J. Duplissy, S. Ehrhart, A. Franchin, S. Gagné, L. Ickes, A. Kürten, et al. 2011. Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. Nature 476 (7361):429–33. doi:https://doi.org/10.1038/nature10343.
  • Kirkby, J., J. Duplissy, K. Sengupta, C. Frege, H. Gordon, C. Williamson, M. Heinritzi, M. Simon, C. Yan, J. Almeida, et al. 2016. Ion-induced nucleation of pure biogenic particles. Nature 533 (7604):521–6., J. doi:https://doi.org/10.1038/nature17953.
  • Kummerlöwe, G., and M. K. Beyer. 2005. Rate estimates for collisions of ionic clusters with neutral reactant molecules. Int. J. Mass Spectrom. 244 (1):84–90.
  • Kürten, A., L. Rondo, S. Ehrhart, and J. Curtius. 2012. Calibration of a chemical ionization mass spectrometer for the measurement of gaseous sulfuric acid. J. Phys. Chem. A 116 (24):6375–86. doi:https://doi.org/10.1021/jp212123n.
  • Lehtipalo, K., J. Leppä, J. Kontkanen, J. Kangasluoma, A. Franchin, D. Wimmer, S. Schobesberger, H. Junninen, T. Petäjä, and M. Sipilä. 2014. Methods for determining particle size distribution and growth rates between 1 and 3 nm using the Particle Size Magnifier. Boreal Environ. Res. 19 (suppl. B):215–36.
  • Lehtipalo, K., L. Rondo, J. Kontkanen, S. Schobesberger, T. Jokinen, N. Sarnela, A. Kürten, S. Ehrhart, A. Franchin, T. Nieminen, et al. 2016. The effect of acid-base clustering and ions on the growth of atmospheric nano-particles. Nat. Commun. 7:11594. doi:https://doi.org/10.1038/ncomms11594.
  • Li, C., M. Lippe, J. Krohn, and R. Signorell. 2019. Extraction of monomer-cluster association rate constants from water nucleation data measured at extreme supersaturations. J. Chem. Phys. 151 (9):094305 doi:https://doi.org/10.1063/1.5118350.
  • Lushnikov, A. A., and M. Kulmala. 2005. A kinetic theory of particle charging in the free-molecule regime. J. Aerosol Sci. 36 (9):1069–88.
  • Mackay, G. I., L. D. Betowski, J. D. Payzant, H. I. Schiff, and D. K. Bohme. 1976. Rate constants at 297 degree K for proton-transfer reactions with hydrocyanic acid and acetonitrile. Comparisons with classical theories and exothermicity. J. Phys. Chem. 80 (26):2919–22. doi:https://doi.org/10.1021/j100567a019.
  • MATLAB. (2017). version 9.2.0 (R2017a). Natick, Massachusetts: The MathWorks Inc.
  • O’Dowd, C. D., J. L. Jimenez, R. Bahreini, R. C. Flagan, J. H. Seinfeld, K. Hämeri, L. Pirjola, M. Kulmala, S. G. Jennings, and T. Hoffmann. 2002. Marine aerosol formation from biogenic iodine emissions. Nature 417:632–6.
  • Saiz-Lopez, A., J. M. C. Plane, A. R. Baker, L. J. Carpenter, R. von Glasow, J. C. Gómez Martín, G. McFiggans, and R. W. Saunders. 2012. Atmospheric chemistry of iodine. Chem. Rev. 112 (3):1773–804. doi:https://doi.org/10.1021/cr200029u.
  • Sakimoto, K. 1985. On the capture rate constant of collisions between ions and symmetric-top molecules. Chem. Phys. Lett. 116 (1):86–8.
  • Sceats, M. G. 1989. Brownian coagulation in aerosols—the role of long range forces. J. Colloid Interface Sci. 129 (1):105–12.
  • Sipilä, M., N. Sarnela, T. Jokinen, H. Henschel, H. Junninen, J. Kontkanen, S. Richters, J. Kangasluoma, A. Franchin, O. Peräkylä, et al. 2016. Molecular-scale evidence of aerosol particle formation via sequential addition of HIO3. Nature 537 (7621):532–4. doi:https://doi.org/10.1038/nature19314.
  • Su, T. 1988. Trajectory calculations of ion–polar molecule capture rate constants at low temperatures. The Journal of Chemical Physics 88 (6):4102–3.
  • Su, T., and M. T. Bowers. 1973a. Theory of ion‐polar molecule collisions. Comparison with experimental charge transfer reactions of rare gas ions to geometric isomers of difluorobenzene and dichloroethylene. J. Chem. Phys. 58 (7):3027–37.
  • Su, T., and M. T. Bowers. 1973b. Ion-Polar molecule collisions: the effect of ion size on ion-polar molecule rate constants; the parameterization of the average-dipole-orientation theory. Int. J. Mass Spectrom. Ion Phys. 12 (4):347–56.
  • Su, T., and W. J. Chesnavich. 1982. Parametrization of the ion–polar molecule collision rate constant by trajectory calculations. J. Chem. Phys. 76 (10):5183–5.
  • Troe, J. 1987. Statistical adiabatic channel model for ion–molecule capture processes. J. Chem. Phys. 87 (5):2773–80.
  • Vanommeslaeghe, K., E. Hatcher, C. Acharya, S. Kundu, S. Zhong, J. Shim, E. Darian, O. Guvench, P. Lopes, I. Vorobyov, et al. 2010. CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem. 31 (4):671–90. doi:https://doi.org/10.1002/jcc.21367.
  • Viggiano, A. A., R. A. Morris, F. Dale, J. F. Paulson, K. Giles, D. Smith, and T. Su. 1990. Kinetic energy, temperature, and derived rotational temperature dependences for the reactions of Kr+(2P3/2) and Ar+ with HCl. J. Chem. Phys. 93 (2):1149–57.
  • Viggiano, A. A., R. A. Morris, J. M. Van Doren, and J. F. Paulson. 1992. The effect of low frequency vibrations in CH4 on the rate constant for the reaction of O2+ (X 2Πg, v = 0) with CH4. J. Chem. Phys. 96 (1):275–84.
  • Viggiano, A. A., R. A. Perry, D. L. Albritton, E. E. Ferguson, and F. C. Fehsenfeld. 1982. Stratospheric negative-ion reaction rates with H2SO4. J. Geophys. Res. 87 (C9):7340. doi:https://doi.org/10.1029/JC087iC09p07340.
  • Zhang, J., and M. Dolg. 2015. ABCluster: the artificial bee colony algorithm for cluster global optimization. Phys. Chem. Chem. Phys. 17 (37):24173–81. doi:https://doi.org/10.1039/c5cp04060d.
  • Zhang, J., and M. Dolg. 2016. Global optimization of clusters of rigid molecules using the artificial bee colony algorithm. Phys. Chem. Chem. Phys. 18 (4):3003–10. doi:https://doi.org/10.1039/c5cp06313b.