809
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Particle detection using the dual-vaporizer configuration of the soot particle Aerosol Mass Spectrometer (SP-AMS)

ORCID Icon, ORCID Icon, , & ORCID Icon
Pages 254-267 | Received 15 Jun 2020, Accepted 15 Oct 2020, Published online: 01 Dec 2020

References

  • Ahern, A. T., R. Subramanian, G. Saliba, E. M. Lipsky, N. M. Donahue, and R. C. Sullivan. 2016. Effect of secondary organic aerosol coating thickness on the real-time detection and characterization of biomass-burning soot by two particle mass spectrometers. Atmos. Meas. Tech. 9 (12):6117–37.
  • Allan, J. D., A. E. Delia, H. Coe, K. N. Bower, M. R. Alfarra, J. L. Jimenez, A. M. Middlebrook, F. Drewnick, T. B. Onasch, M. R. Canagaratna, et al. 2004. A generalised method for the extraction of chemically resolved mass spectra from Aerodyne aerosol mass spectrometer data. J. Aerosol. Sci. 35 (7):909–22. doi:https://doi.org/10.1016/j.jaerosci.2004.02.007.
  • Bhandari, J., S. China, K. K. Chandrakar, G. Kinney, W. Cantrell, R. A. Shaw, L. R. Mazzoleni, G. Girotto, N. Sharma, K. Gorkowski, et al. 2019. Extensive Soot Compaction by Cloud Processing from Laboratory and Field Observations. Sci. Rep. 9: 11824
  • Bond, T. C., S. J. Doherty, D. W. Fahey, P. M. Forster, T. Berntsen, B. J. Deangelo, M. G. Flanner, S. Ghan, B. Kärcher, D. Koch, et al. 2013. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos. 118 (11):5380–552. doi:https://doi.org/10.1002/jgrd.50171.
  • Canagaratna, M. R., J. T. Jayne, J. L. Jimenez, J. D. Allan, M. R. Alfarra, Q. Zhang, T. B. Onasch, F. Drewnick, H. Coe, A. Middlebrook, et al. 2007. Chemical and microphysical characterization of ambient aerosols with the Aerodyne aerosol mass spectrometer. Mass Spectrom. Rev. 26 (2):185–222. doi:https://doi.org/10.1002/mas.20115.
  • Cappa, C. D., T. B. Onasch, P. Massoli, D. R. Worsnop, T. S. Bates, E. S. Cross, P. Davidovits, J. Hakala, K. L. Hayden, B. T. Jobson, et al. 2012. Radiative absorption enhancements due to the mixing state of atmospheric black carbon. Science 337 (6098):1078–81. doi:https://doi.org/10.1126/science.1223447.
  • Cappa, C. D., X. Zhang, L. M. Russell, S. Collier, A. K. Y. Lee, C. L. Chen, R. Betha, S. Chen, J. Liu, D. J. Price, et al. 2019. Light Absorption by Ambient Black and Brown Carbon and its Dependence on Black Carbon Coating State for Two California, USA, Cities in Winter and Summer. J. Geophys. Res. Atmos. 124 (3):1550–77.
  • Corbin, J. C., B. Sierau, M. Gysel, M. Laborde, A. Keller, J. Kim, A. Petzold, T. B. Onasch, U. Lohmann, and A. A. Mensah. 2014. Mass spectrometry of refractory black carbon particles from six sources: Carbon-cluster and oxygenated ions. Atmos. Chem. Phys. 14 (5):2591–603.
  • Cross, E. S., T. B. Onasch, M. R. Canagaratna, J. T. Jayne, J. Kimmel, X.-Y. Yu, M. L. Alexander, D. R. Worsnop, and P. Davidovits. 2009. Single particle characterization using a light scattering module coupled to a time-of-flight aerosol mass spectrometer. Atmos. Chem. Phys. 9 (20):7769–93. doi:https://doi.org/10.5194/acp-9-7769-2009.
  • Cross, E. S., J. G. Slowik, P. Davidovits, J. D. Allan, D. R. Worsnop, J. T. Jayne, D. K. Lewis, M. R. Canagaratna, and T. B. Onasch. 2007. Laboratory and ambient particle density determinations using light scattering in conjunction with aerosol mass spectrometry. Aerosol Sci. Technol. 41 (4):343–59. doi:https://doi.org/10.1080/02786820701199736.
  • DeCarlo, P. F., J. R. Kimmel, A. Trimborn, M. J. Northway, J. T. Jayne, A. C. Aiken, M. Gonin, K. Fuhrer, T. Horvath, K. S. Docherty, et al. 2006. Field-Deployable, High-Resolution, Time-of-Flight Aerosol Mass Spectrometer. Anal. Chem. 78 (24):8281–9. doi:https://doi.org/10.1021/ac061249n.
  • Docherty, K. S., M. Jaoui, E. Corse, J. L. Jimenez, J. H. Offenberg, M. Lewandowski, and T. E. Kleindienst. 2013. Collection efficiency of the aerosol mass spectrometer for chamber-generated secondary organic aerosols. Aerosol Sci. Technol 47 (3):294–309. doi:https://doi.org/10.1080/02786826.2012.752572.
  • Dusek, U., G. P. Reischl, and R. Hitzenberger. 2006. CCN activation of pure and coated carbon black particles. Environ. Sci. Technol. 40 (4):1223–30. doi:https://doi.org/10.1021/es0503478.
  • Fierce, L., T. B. Onasch, C. D. Cappa, C. Mazzoleni, S. China, J. Bhandari, P. Davidovits, D. Al Fischer, T. Helgestad, A. T. Lambe, et al. 2020. Radiative absorption enhancements by black carbon controlled by particle-to-particle heterogeneity in composition. Proc Natl Acad Sci U S A 117 (10):5196–203. doi:https://doi.org/10.1073/pnas.1919723117.
  • Huffman, J. A., Jayne, J. T., Drewnick, F., Aiken, A. C., Onasch, T., Worsnop, D. R., and Jimenez, J. L. (2005). Design, modeling, optimization, and experimental tests of a particle beam width probe for the aerodyne aerosol mass spectrometer. Aerosol Sci. Technol 39: 1143–1163.
  • Jayne, J. T., D. C. Leard, X. Zhang, P. Davidovits, K. A. Smith, C. E. Kolb, and D. R. Worsnop. 2000. Development of an Aerosol Mass Spectrometer for Size and Composition Analysis of Submicron Particles. Aerosol Sci. Technol 33 (1-2):49–70. doi:https://doi.org/10.1080/027868200410840.
  • Jimenez, J. L., J. T. Jayne, Q. Shi, C. E. Kolb, D. R. Worsnop, I. Yourshaw, J. H. Seinfeld, R. C. Flagan, X. Zhang, K. A. Smith, et al. 2003. Ambient aerosol sampling using the Aerodyne Aerosol Mass Spectrometer. J. Geophys. Res 108 (D7):1–13.
  • Lee, A. K. Y., C.-L. Chen, J. Liu, D. J. Price, R. Betha, L. M. Russell, X. Zhang, and C. D. Cappa. 2017. Formation of secondary organic aerosol coating on black carbon particles near vehicular emissions. Atmos. Chem. Phys. 17 (24):15055–67. doi:https://doi.org/10.5194/acp-17-15055-2017.
  • Lee, A. K. Y., M. D. Willis, R. M. Healy, T. B. Onasch, and J. P. D. Abbatt. 2015. Mixing state of carbonaceous aerosol in an urban environment: Single particle characterization using the soot particle aerosol mass spectrometer (SP-AMS). Atmos. Chem. Phys. 15 (4):1823–41. doi:https://doi.org/10.5194/acp-15-1823-2015.
  • Liao, J., C. A. Brock, D. M. Murphy, D. T. Sueper, A. Welti, and A. M. Middlebrook. 2017. Single-particle measurements of bouncing particles and in situ collection efficiency from an airborne aerosol mass spectrometer (AMS) with light-scattering detection. Atmos. Meas. Tech. 10 (10):3801–20.
  • Liu, S., A. C. Aiken, K. Gorkowski, M. K. Dubey, C. D. Cappa, L. R. Williams, S. C. Herndon, P. Massoli, E. C. Fortner, P. S. Chhabra, et al. 2015. Enhanced light absorption by mixed source black and brown carbon particles in UK winter. Nat. Commun. 6:8435
  • Liu, D., J. Allan, J. Whitehead, D. Young, M. Flynn, H. Coe, G. McFiggans, Z. L. Fleming, and B. Bandy. 2013. Ambient black carbon particle hygroscopic properties controlled by mixing state and composition. Atmos. Chem. Phys. 13 (4):2015–29. doi:https://doi.org/10.5194/acp-13-2015-2013.
  • Liu, S., L. M. Russell, D. T. Sueper, and T. B. Onasch. 2013. Organic particle types by single-particle measurements using a time-of-flight aerosol mass spectrometer coupled with a light scattering module. Atmos. Meas. Tech. 6 (2):187–97.
  • Massoli, P., E. C. Fortner, M. R. Canagaratna, L. R. Williams, Q. Zhang, Y. Sun, J. J. Schwab, A. Trimborn, T. B. Onasch, K. L. Demerjian, et al. 2012. Pollution gradients and chemical characterization of particulate matter from vehicular traffic near major roadways: Results from the 2009 Queens College air quality study in NYC. Aerosol Sci. Technol. 46 (11):1201–18. doi:https://doi.org/10.1080/02786826.2012.701784.
  • Massoli, P., T. B. Onasch, C. D. Cappa, I. Nuamaan, J. Hakala, K. Hayden, S.-M. Li, D. T. Sueper, T. S. Bates, P. K. Quinn, et al. 2015. Characterization of black carbon-containing particles from soot particle aerosol mass spectrometer measurements on the R/V Atlantis during CalNex 2010. J. Geophys. Res. Atmos. 120 (6):2575–93. doi:https://doi.org/10.1002/2014JD022834.
  • Matthew, B. M., A. M. Middlebrook, and T. B. Onasch. 2008. Collection efficiencies in an Aerodyne aerosol mass spectrometer as a function of particle phase for laboratory generated aerosols. Aerosol Sci. Technol. 42 (11):884–98. doi:https://doi.org/10.1080/02786820802356797.
  • Middlebrook, A. M., R. Bahreini, J. L. Jimenez, and M. R. Canagaratna. 2012. Evaluation of composition-dependent collection efficiencies for the Aerodyne aerosol mass spectrometer using field data. Aerosol Sci. Technol. 46 (3):258–71. doi:https://doi.org/10.1080/02786826.2011.620041.
  • Nielsen, I. E., A. C. Eriksson, R. Lindgren, J. Martinsson, R. Nyström, E. Z. Nordin, I. Sadiktsis, C. Boman, J. K. Nøjgaard, and J. Pagels. 2017. Time-resolved analysis of particle emissions from residential biomass combustion – Emissions of refractory black carbon, PAHs and organic tracers. Atmos. Environ 165:179–90. doi:https://doi.org/10.1016/j.atmosenv.2017.06.033.
  • Onasch, T. B., E. C. Fortner, A. M. Trimborn, A. T. Lambe, A. J. Tiwari, L. C. Marr, J. C. Corbin, A. A. Mensah, L. R. Williams, P. Davidovits, et al. 2015. Investigations of SP-AMS carbon ion distributions as a function of refractory black carbon particle type. Aerosol Sci. Technol. 49 (6):409–22. doi:https://doi.org/10.1080/02786826.2015.1039959.
  • Onasch, T. B., A. Trimborn, E. C. Fortner, J. T. Jayne, G. L. Kok, L. R. Williams, P. Davidovits, and D. R. Worsnop. 2012. Soot particle aerosol mass spectrometer: Development, validation, and initial application. Aerosol Sci. Technol. 46 (7):804–17. doi:https://doi.org/10.1080/02786826.2012.663948.
  • Ramanathan, V., and G. Carmichael. 2008. Global and regional climate changes due to black carbon. Nature Geosci. 1 (4):221–7. doi:https://doi.org/10.1038/ngeo156.
  • Robinson, E. S., T. B. Onasch, D. Worsnop, and N. M. Donahue. 2017. Collection efficiency of alpha-pinene secondary organic aerosol particles explored via light-scattering single-particle aerosol mass spectrometry. Atmos. Meas. Tech. 10 (3):1139–54. doi:https://doi.org/10.5194/amt-10-1139-2017.
  • Wang, J., D. Liu, X. Ge, Y. Wu, F. Shen, M. Chen, J. Zhao, C. Xie, Q. Wang, W. Xu, et al. 2019. Characterization of black carbon-containing fine particles in Beijing during wintertime. Atmos. Chem. Phys. 19 (1):447–58. doi:https://doi.org/10.5194/acp-19-447-2019.
  • Willis, M. D., A. K. Y. Lee, T. B. Onasch, E. C. Fortner, L. R. Williams, A. T. Lambe, D. R. Worsnop, and J. P. D. Abbatt. 2014. Collection efficiency of the soot-particle aerosol mass spectrometer (SP-AMS) for internally mixed particulate black carbon. Atmos. Meas. Tech. 7 (12):4507–16. doi:https://doi.org/10.5194/amt-7-4507-2014.
  • Xu, W., P. Croteau, L. Williams, M. Canagaratna, T. Onasch, E. Cross, X. Zhang, W. Robinson, D. Worsnop, and J. Jayne. 2017. Laboratory characterization of an aerosol chemical speciation monitor with PM2.5 measurement capability. Aerosol Sci. Technol. 51 (1):69–83. doi:https://doi.org/10.1080/02786826.2016.1241859.
  • Xu, W., A. Lambe, P. Silva, W. Hu, T. Onasch, L. Williams, P. Croteau, X. Zhang, L. Renbaum-Wolff, E. Fortner, et al. 2018. Laboratory evaluation of species-dependent relative ionization efficiencies in the Aerodyne Aerosol Mass Spectrometer. Aerosol Sci. Technol. 52 (6):626–41. doi:https://doi.org/10.1080/02786826.2018.1439570.
  • Xu, L., L. R. Williams, D. E. Young, J. D. Allan, H. Coe, P. Massoli, E. Fortner, P. Chhabra, S. Herndon, W. A. Brooks, et al. 2016. Wintertime aerosol chemical composition, volatility, and spatial variability in the greater London area. Atmos. Chem. Phys. 16 (2):1139–60. doi:https://doi.org/10.5194/acp-16-1139-2016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.