856
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Hygroscopicity and the water-polymer interaction parameter of nano-sized biodegradable hydrophilic substances

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1115-1124 | Received 06 Jan 2021, Accepted 11 May 2021, Published online: 14 Jun 2021

References

  • Agnihotri, S. A., N. N. Mallikarjuna, and T. M. Aminabhavi. 2004. Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J. Control. Release. 100 :5–28. doi: 10.1016/j.jconrel.2004.08.010.
  • Anbarasan, A., J. Nataraj, N. Shanmukhan, and A. Radhakrishnan. 2018. Effect of hygroscopicity on pharmaceutical ingredients, methods to determine and overcome: An overview. J. Chem. Pharm. Res 10 (3):61–7.
  • Azarmi, S., W. H. Roa, and R. Löbenberg. 2008. Targeted delivery of nanoparticles for the treatment of lung diseases. Adv. Drug Deliv. Rev. 60 :863–75. doi: 10.1016/j.addr.2007.11.006.
  • Borchard, W., W. Bremer, and A. Keese. 1980. The state diagram of the water-gelatin system. Colloid Polym. Sci. 258 (5):516–26. doi: 10.1007/BF01404159.
  • Broday, D. M., and P. G. Georgopoulos. 2001. Growth and deposition of hygroscopic particulate matter in the human lungs. Aerosol Sci. Technol. 34 (1):144–59. doi: 10.1080/02786820118725.
  • Crosby, A. J., and J. Lee. 2007. Polymer nanocomposites: The “nano” effect on mechanical properties. Polym. Rev. 47 (2):217–29. doi: 10.1080/15583720701271278.
  • Dinar, E., T. Anttila, and Y. Rudich. 2008. CCN activity and hygroscopic growth of organic aerosols following reactive uptake of ammonia. Environ. Sci. Technol. 42 (3):793–9. doi: 10.1021/es071874p.
  • Dormidontova, E. E. 2002. Role of competitive PEO-water and water-water hydrogen bonding in aqueous solution PEO behavior. Macromolecules 35 (3):987–1001. doi: 10.1021/ma010804e.
  • Flory, P. J. 1942. The thermodynamics of high polymer solutions. V. Phase equilibria in the ternary system: Polymer 1-Polymer 2-solvent. Stat. Mech. Cross-Linked Polym. Networks II. Swelling J. Chem. Phys. 10 (279). doi: 10.1063/1.1723621.
  • Fofie, E., V. Castelluccio, and A. Asa-Awuku. 2018. Exploring CCN droplet suppression with a higher sensitivity optical particle counter. Aerosol Sci. Technol. 52 (1):78–86. doi: 10.1080/02786826.2017.1379592.
  • Gill, S., R. Löbenberg, T. Ku, S. Azarmi, W. Roa, and E. J. Prenner. 2007. Nanoparticles: Characteristics, mechanisms of action, and toxicity in pulmonary drug delivery - A review. J. Biomed. Nanotechnol. 3 :107–119. doi: 10.1166/jbn.2007.015.
  • Hahm, J. I. 2014. Fundamentals of nanoscale polymer-protein interactions and potential contributions to solid-state nanobioarrays. Langmuir 30 (33):9891–904. doi: 10.1021/la404481t.
  • Hindle, M., and P. W. Longest. 2010. Evaluation of Enhanced Condensational Growth (ECG) for controlled respiratory drug delivery in a mouth-throat and upper tracheobronchial model. Pharm. Res. 27 (9):1800–11. doi: 10.1007/s11095-010-0165-z.
  • Karimi, M., W. Albrecht, M. Heuchel, M. H. Kish, J. Frahn, T. Weigel, D. Hofmann, H. Modarress, and A. Lendlein. 2005. Determination of water/polymer interaction parameter for membrane-forming systems by sorption measurement and a fitting technique. J. Memb. Sci. 265 (1–2):1–12. doi: 10.1016/j.memsci.2005.04.030.
  • Kalberer, M., D. Paulsen, M. Sax, M. Steinbacher, J. Dommen, A. S. H. Prevot, R. Fisseha, E. Weingartner, V. Frankevich, R. Zenobi, et al. 2004. Identification of polymers as major components of atmospheric organic aerosols. Science 303 (5664):1659–62. doi: 10.1126/science.1092185.
  • Kim, J. W., J. Xi, and X. A. Si. 2013. Dynamic growth and deposition of hygroscopic aerosols in the nasal airway of a 5-year-old child. Int. J. Numer. Method. Biomed. Eng. 29 (1):17–39. doi: 10.1002/cnm.2490.
  • Köhler, H. 1936. The nucleus in and the growth of hygroscopic droplets. Trans. Faraday Soc. 32:1152–61. doi: 10.1039/TF9363201152.
  • Kumar, P., A. Nenes, and I. N. Sokolik. 2009. Importance of adsorption for CCN activity and hygroscopic properties of mineral dust aerosol. Geophys. Res. Lett. 36 (24):L24804. doi: 10.1029/2009GL040827.
  • Lathem, T. L., and A. Nenes. 2011. Water vapor depletion in the DMT continuous-flow CCN chamber: Effects on supersaturation and droplet growth. Aerosol Sci. Technol. 45 (5):604–15. doi: 10.1080/02786826.2010.551146.
  • Longest, P. W., and M. Hindle. 2012. Condensational growth of combination drug-excipient submicrometer particles for targeted high efficiency pulmonary delivery: Comparison of CFD predictions with experimental results. Pharm. Res. 29 (3):707–21. doi: 10.1007/s11095-011-0596-1.
  • Longest, P. W., G. Tian, and M. Hindle. 2011. Improving the lung delivery of nasally administered aerosols during noninvasive ventilation-An application of Enhanced Condensational Growth (ECG). J. Aerosol Med. Pulm. Drug Deliv. 24 (2):103–18. doi: 10.1089/jamp.2010.0849.
  • Malcolmson, R. J., and J. K. Embleton. 1998. Dry powder formulations for pulmonary delivery. Pharm. Sci. Technol. Today. 1 :394–98. doi: 10.1016/S1461-5347(98)00099-6.
  • Man, N. C., S. M. Kreidenweis, and C. K. Chan. 2008. Measurements of the hygroscopic and deliquescence properties of organic compounds of different solubilities in water and their relationship with cloud condensation nuclei activities. Environ. Sci. Technol. 42 (10):3602–8. doi: 10.1021/es7023252.
  • Moore, R. H., A. Nenes, and J. Medina. 2010. Scanning mobility CCN analysis—A method for fast measurements of size-resolved CCN distributions and activation kinetics. Aerosol Sci. Technol. 44 (10):861–71. doi: 10.1080/02786826.2010.498715.
  • Muralidharan, P., M. Malapit, E. Mallory, D. Hayes, and H. M. Mansour. 2015. Inhalable nanoparticulate powders for respiratory delivery. Nanomed. Nanotechnol. Biol. Med. 11 :1189–99. doi: 10.1016/j.nano.2015.01.007.
  • Napolitano, S., and M. Wübbenhorst. 2011. The lifetime of the deviations from bulk behaviour in polymers confined at the nanoscale. Nat. Commun. 2 (1):1–7. doi: 10.1038/ncomms1259.
  • Petters, M. D., and S. M. Kreidenweis. 2007. A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmos. Chem. Phys. 7 (8):1961–71. doi: 10.5194/acp-7-1961-2007.
  • Petters, M. D., S. M. Kreidenweis, A. J. Prenni, R. C. Sullivan, C. M. Carrico, K. A. Koehler, and P. J. Ziemann. 2009. Role of molecular size in cloud droplet activation. Geophys. Res. Lett. 36 (22):L22801. doi: 10.1029/2009GL040131.
  • Petters, M. D., S. M. Kreidenweis, J. R. Snider, K. A. Koehler, Q. Wang, A. J. Prenni, and P. J. Demott. 2006. Cloud droplet activation of polymerized organic aerosol. Tellus B Chem. Phys. Meteorol. 58 (3):196–205. doi: 10.1111/j.1600-0889.2006.00181.x.
  • Roberts, G. C., and A. Nenes. 2005. A continuous-flow streamwise thermal-gradient CCN chamber for atmospheric measurements. Aerosol Sci. Technol. 39 (3):206–21. doi: 10.1080/027868290913988.
  • Shelly, M. P., G. M. Lloyd, and G. R. Park. 1988. A review of the mechanisms and methods of humidification of inspired gases. Intensive Care Med. 14 :1–9. doi: 10.1007/BF00254114.
  • Sullivan, R. C., M. K. J. Moore, M. D. Petters, S. M. Kreidenweis, G. C. Roberts, and K. A. Prather. 2009. Atmospheric chemistry and physics effect of chemical mixing state on the hygroscopicity and cloud nucleation properties of calcium mineral dust particles. Atmos. Chem. Phys. 9 (10):3303–16. doi: 10.5194/acp-9-3303-2009.
  • Tang, M., C. K. Chan, Y. J. Li, H. Su, Q. Ma, Z. Wu, G. Zhang, Z. Wang, M. Ge, M. Hu, et al. 2019. A review of experimental techniques for aerosol hygroscopicity studies. Atmos. Chem. Phys. 19 (19):12631–86. doi: 10.5194/acp-19-12631-2019.
  • Visalakshi, N. A., T. T. Mariappan, H. Bhutani, and S. Singh. 2005. Behavior of moisture gain and equilibrium moisture contents (EMC) of various drug substances and correlation with compendial information on hygroscopicity and loss on drying. Pharm. Dev. Technol. 10 (4):489–97. doi: 10.1080/10837450500299883.
  • Vu, D., S. Gao, T. Berte, M. Kacarab, Q. Yao, K. Vafai, and A. Asa-Awuku. 2019. External and internal cloud condensation nuclei (CCN) mixtures: Controlled laboratory studies of varying mixing states. Atmos. Meas. Tech. 12 (8):4277–89. doi: 10.5194/amt-12-4277-2019.
  • Vu, T. V., J. M. Delgado-Saborit, and R. M. Harrison. 2015. A review of hygroscopic growth factors of submicron aerosols from different sources and its implication for calculation of lung deposition efficiency of ambient aerosols. Air Qual. Atmos. Health 8 (5):429–40. doi: 10.1007/s11869-015-0365-0.
  • Weinmüller, C., C. Langel, F. Fornasiero, C. J. Radke, and J. M. Prausnitz. 2006. Sorption kinetics and equilibrium uptake for water vapor in soft-contact-lens hydrogels. J. Biomed. Mater. Res. 77A (2):230–41. doi: 10.1002/jbm.a.30598.
  • Wolf, B. A. 2003. Chain connectivity and conformational variability of polymers: Clues to an adequate thermodynamic description of their solutions, 2. Macromol. Chem. Phys. 204 (11):1381–90. doi: 10.1002/macp.200350002.
  • Zhang, Q., J. L. Jimenez, M. R. Canagaratna, J. D. Allan, H. Coe, I. Ulbrich, M. R. Alfarra, A. Takami, A. M. Middlebrook, Y. L. Sun, et al. 2007. Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically‐influenced Northern Hemisphere midlatitudes. Geophys. Res. Lett. 34 (13):L13801. doi: 10.1029/[email protected]/(ISSN)1944-8007.GRL40.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.