708
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Development of characteristic airway bifurcations in cystic fibrosis

, , , &
Pages 1143-1164 | Received 25 Nov 2020, Accepted 12 May 2021, Published online: 14 Jun 2021

References

  • Awadalla, M., S. Miyawaki, M. H. Abou Alaiwa, R. J. Adam, D. C. Bouzek, A. S. Michalski, M. K. Fuld, K. J. Reynolds, E. A. Hoffman, C. L. Lin, et al. 2014. Early airway structural changes in cystic fibrosis pigs as a determinant of particle distribution and deposition. Ann. Biomed. Eng. 42 (4):915–27. doi: 10.1007/s10439-013-0955-7.
  • Bass, K., S. Boc, M. Hindle, K. Dodson, and P. W. Longest. 2019. High-efficiency nose-to-lung aerosol delivery in an infant: Development of a validated computational fluid dynamics method. J. Aerosol. Med. Pulm Drug Deliv. 32 (3):132–48. doi: 10.1089/jamp.2018.1490.
  • Bass, K., D. Farkas, A. Hassan, S. Bonasera, M. Hindle, and P. W. Longest. 2021. High-efficiency dry powder aerosol delivery to children: Review and application of new technologies. J. Aerosol Sci. 153:105692. doi: 10.1016/j.jaerosci.2020.105692. Bass, K., and P. W. Longest. 2018. Recommendations for simulating microparticle deposition at conditions similar to the upper airways with two-equation turbulence models. J. Aerosol. Sci. 119:31–50.
  • Bos, A. C., J. W. Mouton, M. van Westreenen, E. R. Andrinopoulou, H. M. Janssens, and H. A. W. M. Tiddens. 2017. Patient-specific modelling of regional tobramycin concentration levels in airways of patients with cystic fibrosis: can we dose once daily? J. Antimicrob. Chemother. 72 (12):3435–42. doi: 10.1093/jac/dkx293.
  • Bos, A. C., C. van Holsbeke, J. W. de Backer, M. van Westreenen, H. M. Janssens, W. G. Vos, and H. A. W. M. Tiddens. 2015. Patient-specific modeling of regional antibiotic concentration levels in airways of patients with cystic fibrosis: Are we dosing high enough? Plos One. 10 (3):e0118454. doi: 10.1371/journal.pone.0118454.
  • Bouma, N. R., H. M. Janssens, E. ‐R. Andrinopoulou, and H. A. W. M. Tiddens. 2020. Airway disease on chest computed tomography of preschool children with cystic fibrosis is associated with school-age bronchiectasis. Pediatr. Pulmonol. 55 (1):141–8. doi: 10.1002/ppul.24498.
  • Byron, P. R., M. Hindle, C. F. Lange, P. W. Longest, D. McRobbie, M. J. Oldham, B. Olsson, C. G. Thiel, H. Wachtel, and W. H. Finlay. 2010. In vivo–in vitro correlations: predicting pulmonary drug deposition from pharmaceutical aerosols. J. Aerosol Med. Pulmonary Drug Deliv. 23 (S2):S-59–69. doi: 10.1089/jamp.2010.0846.
  • Cai, F. S., and C. P. Yu. 1988. Inertial and interceptional deposition of spherical particles and fibers in a bifurcating airway. J. Aerosol Sci. 19 (6):679–88. doi: 10.1016/0021-8502(88)90003-1.
  • Chan, T. L., and M. Lippmann. 1980. Experimental measurements and emperical modeling of the regional deposition of inhaled particles in humans. Am. Ind. Hyg. Assoc. J. 41 (6):399–409. doi: 10.1080/15298668091424942.
  • Comer, J. K., C. Kleinstreuer, and C. S. Kim. 2001. Flow structures and particle deposition patterns in double-bifurcation airway models. Part 2. Aerosol transport and deposition. J. Fluid Mech. 435:55–80. doi: 10.1017/S0022112001003810.
  • de Jong, P. A., Y. Nakano, M. H. Lequin, J. R. Mayo, R. Woods, P. D. Pare, and H. A. W. M. Tiddens. 2004. Progressive damage on high resolution computed tomography despite stable lung function in cystic fibrosis. Eur. Respir. J. 23 (1):93–7. doi: 10.1183/09031936.03.00006603.
  • Delvadia, R., M. Hindle, P. W. Longest, and P. R. Byron. 2013. In vitro tests for aerosol deposition II: IVIVCs for different dry powder inhalers in normal adults. J. Aerosol. Med. Pulm Drug Deliv. 26 (3):138–44. doi: 10.1089/jamp.2012.0975.
  • Delvadia, R., P. W. Longest, and P. R. Byron. 2012. In vitro tests for aerosol deposition. I: Scaling a physical model of the upper airways to predict drug deposition variation in normal humans. J. Aerosol. Med. Pulm. Drug Deliv. 25 (1):32–40. doi: 10.1089/jamp.2011.0905.
  • Estepar, R. S., J. C. Ross, R. Harmouche, J. Onieva, A. A. Diaz, and G. R. Washko. 2015. Chest imaging platform: An open-source library and workstation for quantitative chest imaging. Am. J. Resp. Crit. Care Med. 191:A4975.
  • Ferron, G. A., W. G. Kreyling, and B. Haider. 1988. Inhalation of salt aerosol particles - II. Growth and deposition in the human respiratory tract. J. Aerosol Sci. 19 (5):611–31. doi: 10.1016/0021-8502(88)90213-3.
  • Finlay, W. H. 2001. The mechanics of inhaled pharmaceutical aerosols. San Diego: Academic Press.
  • Garcia, G. J. M., E. W. Tewksbury, B. A. Wong, and J. S. Kimbell. 2009. Interindividual variability in nasal filtration as a function of nasal cavity geometry. J. Aerosol. Med. Pulm Drug Deliv. 22 (2):139–55. doi: 10.1089/jamp.2008.0713.
  • Golshahi, L., M. L. Noga, and W. H. Finlay. 2012. Deposition of inhaled micrometer-sized particles in oropharyngeal airway replicas of children at constant flow rates. J. Aerosol Sci. 49:21–31. doi: 10.1016/j.jaerosci.2012.03.001.
  • Golshahi, L., M. L. Noga, R. B. Thompson, and W. H. Finlay. 2011. In vitro deposition measurement of inhaled micrometer-sized particles in extrathoracic airways of children and adolescents during nose breathing. J. Aerosol Sci. 42 (7):474–88. doi: 10.1016/j.jaerosci.2011.04.002.
  • Hassan, A., D. Farkas, W. Longest, and M. Hindle. 2020. Characterization of excipient enhanced growth (EEG) tobramycin dry powder aerosol formulations. Int. J. Pharm. 591:120027. doi: 10.1016/j.ijpharm.2020.120027.
  • Heistracher, T., and W. Hofmann. 1995. Physiologically realistic models of bronchial airway bifurcations. J. Aerosol Sci. 26 (3):497–509. doi: 10.1016/0021-8502(94)00113-D.
  • Hofmann, W., R. Sturm, J. S. Fleming, J. H. Conway, and L. Bolt. 2005. Simulation of three-dimensional particle deposition patterns in human lungs and comparison with experimental SPECT data. Aerosol. Sci. Technol. 39 (8):771–81. doi: 10.1080/02786820500237158.
  • ICRP. 1994. Human respiratory tract model for radiological protection. Oxford: Pergamon.
  • Kaviratna, A., G. Tian, X. Liu, R. Delvadia, S. Lee, and C. Guo. 2019. Evaluation of bio-relevant mouth-throat models for characterization of metered dose inhalers. AAPS PharmSciTech 20 (3):130. doi: 10.1208/s12249-019-1339-6.
  • Khajeh-Hosseini-Dalasm, N., and P. W. Longest. 2015. Deposition of particles in the alveolar airways: Inhalation and breath-hold with pharmaceutical aerosols. J. Aerosol. Sci. 79:15–30. doi: 10.1016/j.jaerosci.2014.09.003.
  • Kiaee, M., H. Wachtel, M. L. Noga, A. R. Martin, and W. H. Finlay. 2019. An idealized geometry that mimics average nasal spray deposition in adults: A computational study. Comput. Biol. Med. 107:206–17. doi: 10.1016/j.compbiomed.2019.02.013.
  • Kikinis, R., S. D. Pieper, and K. G. Vosburgh. 2014. 3D Slicer: A platform for subject-specific image analysis, visualization, and clinical support. In Intraoperative imaging and image-guided therapy, ed. F. Jolesz. New York, NY: Springer.
  • Kim, C. S., D. M. Fisher, D. J. Lutz, and T. R. Gerrity. 1994. Particle deposition in bifurcating airway models with varying airway geometry. J. Aerosol Sci. 25 (3):567–81. doi: 10.1016/0021-8502(94)90072-8.
  • Kleinstreuer, C., and Z. Zhang. 2009. An adjustable triple-bifurcation unit model for air-particle flow simulations in human tracheobronchial airways. J. Biomech. Eng. 131 (2):21007. doi: 10.1115/1.3005339.
  • Kolanjiyil, A. V., and C. Kleinstreuer. 2013a. Nanoparticle mass transfer from lung airways to systemic regions–Part I: Whole-lung aerosol dynamics. J. Biomech. Eng. 135 (12):121003. doi: 10.1115/1.4025332.
  • Kolanjiyil, A. V., and C. Kleinstreuer. 2013b. Nanoparticle mass transfer from lung airways to systemic regions-Part II: Multi-compartmental modeling. J. Biomech. Eng. 135 (12):121004. doi: 10.1115/1.4025333.
  • Kolanjiyil, A. V., and C. Kleinstreuer. 2016. Computationally efficient analysis of particle transport and deposition in a human whole-lung-airway model. Part I: Theory and model validation. Comput. Biol. Med. 79:193–204. doi: 10.1016/j.compbiomed.2016.10.020.
  • Kolanjiyil, A. V., and C. Kleinstreuer. 2017. Computational analysis of aerosol-dynamics in a human whole-lung airway model. J. Aerosol Sci. 114:301–16. doi: 10.1016/j.jaerosci.2017.10.001.
  • Kolanjiyil, A. V., C. Kleinstreuer, and R. T. Sadikot. 2017. Computationally efficient analysis of particle transport and deposition in a human whole-lung-airway model. Part II: Dry powder inhaler application. Comput. Biol. Med. 84:247–53. doi: 10.1016/j.compbiomed.2016.10.025.
  • Kuo, W., M. de Bruijne, J. Petersen, K. Nasserinejad, H. Ozturk, Y. Chen, A. Perez-Rovira, and H. A. W. M. Tiddens. 2017. Diagnosis of bronchiectasis and airway wall thickening in children with cystic fibrosis: Objective airway-artery quantification. Eur. Radiol. 27 (11):4680–9. doi: 10.1007/s00330-017-4819-7.
  • Long, F. R., R. S. Williams, and R. G. Castile. 2004. "Structural airway abnormalities in infants and young children with cystic fibrosis. The Journal of Pediatrics 144 (2):154–61. doi: 10.1016/j.jpeds.2003.09.026.
  • Longest, P. W., K. Bass, R. Dutta, V. Rani, M. L. Thomas, A. El-Achwah, and M. Hindle. 2019. Use of computational fluid dynamics deposition modeling in respiratory drug delivery. Expert Opin Drug Deliv. 16 (1):7–26. doi: 10.1080/17425247.2019.1551875.
  • Longest, P. W., L. Golshahi, S. R. B. Behara, G. Tian, D. R. Farkas, and M. Hindle. 2015. Efficient Nose-to-Lung (N2L) aerosol delivery with a dry powder inhaler. J. Aerosol Med. Pulm. Drug Del. 28 (3):189–201. doi: 10.1089/jamp.2014.1158.
  • Longest, P. W., and M. Hindle. 2009. Evaluation of the respimat soft mist inhaler using a concurrent CFD and in vitro approach. J. Aerosol Med. Pulm. Drug Del. 22 (2):99–112. doi: 10.1089/jamp.2008.0708.
  • Longest, P. W., M. Hindle, S. Das Choudhuri, and P. R. Byron. 2007. Numerical simulations of capillary aerosol generation: CFD model development and comparisons with experimental data. " Aerosol Sci. Technol. 41 (10):952–73. doi: 10.1080/02786820701607027.
  • Longest, P. W., and L. T. Holbrook. 2012. In silico models of aerosol delivery to the respiratory tract—development and applications. Adv. Drug Delivery Rev. 64 (4):296–311. doi: 10.1016/j.addr.2011.05.009.
  • Longest, P. W., and M. J. Oldham. 2008. Numerical and experimental deposition of fine respiratory aerosols: Development of a two-phase drift flux model with near-wall velocity corrections. Aerosol. Sci. 39 (1):48–70. doi: 10.1016/j.jaerosci.2007.10.001.
  • Longest, P. W., G. Tian, R. Delvadia, and M. Hindle. 2012. Development of a stochastic individual path (SIP) model for predicting the deposition of pharmaceutical aerosols: Effects of turbulence, polydisperse aerosol size, and evaluation of multiple lung lobes. " Aerosol Sci. Technol. 46 (12):1271–85. doi: 10.1080/02786826.2012.708799.
  • Longest, P. W., G. Tian, R. L. Walenga, and M. Hindle. 2012. Comparing MDI and DPI aerosol deposition using in vitro experiments and a new stochastic individual path (SIP) model of the conducting airways. Pharm. Res. 29 (6):1670–88. doi: 10.1007/s11095-012-0691-y.
  • Longest, P. W., and S. Vinchurkar. 2007. Validating CFD predictions of respiratory aerosol deposition: Effects of upstream transition and turbulence. J. Biomech. 40 (2):305–16. doi: 10.1016/j.jbiomech.2006.01.006.
  • Longest, P. W., S. Vinchurkar, and T. Martonen. 2006. "Transport and deposition of respiratory aerosols in models of childhood asthma. J. Aerosol Sci. 37 (10):1234–57. doi: 10.1016/j.jaerosci.2006.01.011.
  • Martonen, T. B., and X. F. Guan. 2001. Effects of tumors on inhaled pharmacologic drugs II. Particle motion. CBB. 35 (3):245–53. doi: 10.1385/CBB:35:3:245.
  • Martonen, T. B., Y. Yang, and Z. Q. Xue. 1994. Effects of carinal ridge shapes on lung airstreams. Aerosol Sci. Technol. 21 (2):119–31. doi: 10.1080/02786829408959702.
  • Phalen, R. F., M. J. Oldham, C. B. Beaucage, T. T. Crocker, and J. D. Mortensen. 1985. Postnatal enlargement of human tracheobronchial airways and implications for particle deposition. Anat. Rec. 212 (4):368–80. doi: 10.1002/ar.1092120408.
  • Roache, P. J. 1994. Perspective: A method for uniform reporting of grid refinement studies. J. Fluids Eng.-Transact. ASME 116 (3):405–13. doi: 10.1115/1.2910291.
  • Rosenow, T., M. C. J. Oudraad, C. P. Murray, L. Turkovic, W. Kuo, M. de Bruijne, S. C. Ranganathan, H. A. W. M. Tiddens, and S. M. Stick. 2015. PRAGMA-CF A quantitative structural lung disease computed tomography outcome in young children with cystic fibrosis. Am. J. Respir. Crit. Care Med. 191 (10):1158–65. doi: 10.1164/rccm.201501-0061OC.
  • Ruzycki, C. A., A. R. Martin, and W. H. Finlay. 2019. An exploration of factors affecting in vitro deposition of pharmaceutical aerosols in the Alberta idealized throat. J. Aerosol. Med. Pulm. Drug Deliv. 32 (6):405–17. doi: 10.1089/jamp.2019.1531.
  • Sly, P. D., S. Brennan, C. Gangell, N. de Klerk, C. Murray, L. Mott, S. M. Stick, P. J. Robinson, C. F. Robertson, and S. C. Ranganathan, Fibrosis Australian Respiratory Early Surveillance Team for Cystic. 2009. Lung disease at diagnosis in infants with cystic fibrosis detected by newborn screening. Am. J. Respir. Crit. Care Med. 180 (2):146–52. doi: 10.1164/rccm.200901-0069OC.
  • Sly, P. D., C. L. Gangell, L. Chen, R. S. Ware, S. Ranganathan, L. S. Mott, C. P. Murray, S. M. Stick, and I. Arest Cf. 2013. Risk factors for bronchiectasis in children with cystic fibrosis. N. Engl. J. Med. 368 (21):1963–70. doi: 10.1056/NEJMoa1301725.
  • Storey-Bishoff, J., M. Noga, and W. H. Finlay. 2008. Deposition of micrometer-sized aerosol particles in infant nasal airway replicas. J. Aerosol Sci. 39 (12):1055–65. doi: 10.1016/j.jaerosci.2008.07.011.
  • Tian, G., M. Hindle, S. Lee, and P. W. Longest. 2015. Validating CFD predictions of pharmaceutical aerosol deposition with in vivo data. Pharm. Res. 32 (10):3170–87. doi: 10.1007/s11095-015-1695-1.
  • Tian, G., P. W. Longest, G. Su, R. L. Walenga, and M. Hindle. 2011. Development of a stochastic individual path (SIP) model for predicting the tracheobronchial deposition of pharmaceutical aerosols: Effects of transient inhalation and sampling the airways. J. Aerosol Sci. 42 (11):781–99. doi: 10.1016/j.jaerosci.2011.07.005.
  • Tiddens, H. A. W. M., S. H. Donaldson, M. Rosenfeld, and P. D. Pare. 2010. Cystic fibrosis lung disease starts in the small airways: Can we treat it more effectively? Pediatr. Pulmonol. 45 (2):107–17. doi: 10.1002/ppul.21154.
  • Vinchurkar, S., and P. W. Longest. 2008. Evaluation of hexahedral, prismatic and hybrid mesh styles for simulating respiratory aerosol dynamics. Comput. Fluids 37 (3):317–31. doi: 10.1016/j.compfluid.2007.05.001.
  • Walenga, R. L., and P. W. Longest. 2016. Current Inhalers deliver very small doses to the lower tracheobronchial airways: Assessment of healthy and constricted lungs. J. Pharm. Sci. 105 (1):147–59. doi: 10.1016/j.xphs.2015.11.027.
  • Walenga, R. L., G. Tian, and P. W. Longest. 2013. Development of characteristic upper tracheobronchial airway models for testing pharmaceutical aerosol delivery. J. Biomech. Eng. 135 (9):91010. doi: 10.1115/1.4024630.
  • Wei, X., M. Hindle, A. Kaviratna, B. K. Huynh, R. R. Delvadia, D. Sandell, and P. R. Byron. 2018. In vitro tests for aerosol deposition. VI: Realistic testing with different mouth–throat models and in vitro—in vivo correlations for a dry powder inhaler, metered dose inhaler, and soft mist inhaler. J. Aerosol Med. Pulm. Drug Deliv. 31 (6):358–71. doi: 10.1089/jamp.2018.1454.
  • WHO. 2006. WHO Child Growth Standards: Length/height-for-age, weight-for-age, weight-for-length, weight-for-height and body mass index-for-age: Methods and development. Geneva: World Health Organization.
  • Xi, J., and P. W. Longest. 2007. Transport and deposition of micro-aerosols in realistic and simplified models of the oral airway. Ann. Biomed. Eng. 35 (4):560–81. doi: 10.1007/s10439-006-9245-y.
  • Xi, J., P. W. Longest, and T. B. Martonen. 2008. Effects of the laryngeal jet on nano-and microparticle transport and deposition in an approximate model of the upper tracheobronchial airways. J. Appl. Physiol. 104 (6):1761–77. doi: 10.1152/japplphysiol.01233.2007.
  • Yeh, H. C., and G. M. Schum. 1980. Models of human lung airways and their application to inhaled particle deposition. Bull. Math. Biol. 42 (3):461–80. doi: 10.1007/BF02460796.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.