569
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Application of planar auto-compensating laser-induced incandescence to low-sooting turbulent flames and investigation of the detection gate width effect

, , , &
Pages 1215-1229 | Received 22 Dec 2020, Accepted 20 May 2021, Published online: 25 Jun 2021

References

  • Axelsson, B., R. Collin, and P.-E. Bengtsson. 2001. Laser-induced incandescence for soot particle size and volume fraction measurements using on-line extinction calibration. Appl. Phys. B 72:367–72.
  • Bescond, A., J. Yon, F. X. Ouf, C. Rozé, A. Coppalle, P. Parent, D. Ferry, and C. Laffon. 2016. Soot optical properties determined by analyzing extinction spectra in the visible near-UV: Toward an optical speciation according to constituents and structure. J. Aerosol Sci. 101:118–32. doi:10.1016/j.jaerosci.2016.08.001.
  • Bladh, H., N.-E. Olofsson, T. Mouton, J. Simonsson, X. Mercier, A. Faccinetto, P.-E. Bengtsson, and P. Desgroux. 2015. Probing the smallest soot particles in low-sooting premixed flames using laser-induced incandescence. Proc. Combust. Inst. 35(2):1843–50. doi:10.1016/j.proci.2014.06.001.
  • Bouvier, M., G. Cabot, J. Yon, and F. Grisch. 2021. On the use of PIV, LII, PAH-PLIF and OH-PLIF for the study of soot formation and flame structure in a swirl stratified premixed ethylene/air flame. Proc. Combust. Inst. (2020) 38(1):1851–8. doi:10.1016/j.proci.2020.10.002.
  • Bradley, D., and K. Matthews. 1968. Measurement of high gas temperatures with fine wire thermocouples. J. Mech. Eng. Sci. 10(4):299–305. doi:10.1243/JMES_JOUR_1968_010_048_02.
  • Cenker, E., G. Bruneaux, T. Dreier, and C. Schulz. 2015. Sensitivity analysis for soot particle size imaging with laser-induced incandescence at high pressure. Appl. Phys. B 119(4):745–63. doi:10.1007/s00340-015-6009-0.
  • Cenker, E., and W. L. Roberts. 2017. Quantitative effects of rapid heating on soot-particle sizing through analysis of two-pulse LII. Appl. Phys. B 123(3):74. doi:10.1007/s00340-017-6653-7.
  • Chang, H. C., and T. T. Charalampopoulos. 1990. Determination of the wavelength dependence of refractive indices of flame soot. Proc. R. Soc. Lond. Series A 430(1880):577–591.
  • Choi, M. Y., and K. A. Jensen. 1998. Calibration and correction of laser-induced incandescence for soot volume fraction measurements. Combust. Flame 112:485–91. doi:10.1016/S0010-2180(97)00139-9.
  • Crosland, B. M., M. R. Johnson, and K. A. Thomson. 2011. Analysis of uncertainties in instantaneous soot volume fraction measurements using two-dimensional, auto-compensating, laser-induced incandescence (2D-AC-LII). Appl. Phys. B 102(1):173–83. doi:10.1007/s00340-010-4130-7.
  • Dalzell, W. H., and A. F. Sarofim. 1969. Optical constants of soot and their application to heat-flux calculations. J. Heat Transfer 91(1):100–4. doi:10.1115/1.3580063.
  • De Iuliis, S., M. Barbini, S. Benecchi, F. Cignoli, and G. Zizak. 1998. Determination of the soot volume fraction in an ethylene diffusion flame by multiwavelength analysis of soot radiation. Combust. Flame 115(1–2):253–61. doi:10.1016/S0010-2180(97)00357-X.
  • De Iuliis, S., F. Cignoli, and G. Zizak. 2005. Two-color laser-induced incandescence (2C-LII) technique for absolute soot volume fraction measurements in flames. Appl. Opt. 44:7414–23. doi:10.1364/ao.44.007414.
  • De Iuliis, S., F. Migliorini, F. Cignoli, and G. Zizak. 2007. 2D soot volume fraction imaging in an ethylene diffusion flame by two-color laser-induced incandescence (2C-LII) technique and comparison with results from other optical diagnostics. Proc. Combust. Inst. 31(1):869–76. doi:10.1016/j.proci.2006.07.149.
  • Geigle, K. P., M. Köhler, W. O’Loughlin, and W. Meier. 2015a. Investigation of soot formation in pressurized swirl flames by laser measurements of temperature, flame structures and soot concentrations. Proc. Combust. Inst. 35(3):3373–80. doi:10.1016/j.proci.2014.05.135.
  • Geigle, K. P., W. O’Loughlin, R. Hadef, and W. Meier. 2015b. Visualization of soot inception in turbulent pressurized flames by simultaneous measurement of laser-induced fluorescence of polycyclic aromatic hydrocarbons and laser-induced incandescence, and correlation to OH distributions. Appl. Phys. B 119(4):717–30. doi:10.1007/s00340-015-6075-3.
  • Geitlinger, H., T. H. Streibel, R. Suntz, and H. Bockhorn. 1999. Statistical analysis of soot volume fractions, particle number densities and particle radii in a turbulent diffusion flame. Combust. Sci. Technol. 149(1–6):115–34. doi:10.1080/00102209908952102.
  • Hadef, R., K. P. Geigle, J. Zerbs, R. A. Sawchuk, and D. R. Snelling. 2013. The concept of 2D gated imaging for particle sizing in a laminar diffusion flame. Appl. Phys. B 112(3):395–408. doi:10.1007/s00340-013-5507-1.
  • Ladommatos, N., and H. Zhao. 1994. A guide to measurement of flame temperature and soot concentration in diesel engines using the two-colour method. Part I: Principles. SAE International No. 941956. SAE Technical Paper.
  • Leschowski, M., K. Thomson, D. Snelling, C. Schulz, and G. Smallwood. 2015. Combination of LII and extinction measurements for determination of soot volume fraction and estimation of soot maturity in non-premixed laminar flames. Appl. Phys. B 119(4):685–96. doi:10.1007/s00340-015-6092-2.
  • Liu, F., J. Yon, A. Fuentes, P. Lobo, G. J. Smallwood, and J. C. Corbin. 2020. Review of recent literature on the light absorption properties of black carbon: Refractive index, mass absorption cross section, and absorption function. Aerosol Sci. Technol. 54(1):33–51. doi:10.1080/02786826.2019.1676878.
  • Mansmann, R., T. Terheiden, P. Schmidt, J. Menser, T. Dreier, T. Endres, and C. Schulz. 2018. LIISim: A modular signal processing toolbox for laser-induced incandescence measurements. Appl. Phys. B 124(4):69. doi:10.1007/s00340-018-6934-9.
  • Melton, L. A. 1984. Soot diagnostics based on laser heating. Appl. Opt. 23:2201–8. doi:10.1364/ao.23.002201.
  • Michelsen, H. A. 2003. Understanding and predicting the temporal response of laser-induced incandescence from carbonaceous particles. J. Chem. Phys. 118(15):7012–45. doi:10.1063/1.1559483.
  • Michelsen, H. A., F. Liu, B. F. Kock, H. Bladh, A. Boiarciuc, M. Charwath, T. Dreier, R. Hadef, M. Hofmann, J. Reimann, et al. 2007. Modeling laser-induced incandescence of soot: A summary and comparison of LII models. Appl. Phys. B 87(3):503–21. doi:10.1007/s00340-007-2619-5.
  • Mulla, I. A., and B. Renou. 2019. Simultaneous imaging of soot volume fraction, PAH, and OH in a turbulent n-heptane spray flame. Combust. Flame 209:452–66. doi:10.1016/j.combustflame.2019.08.012.
  • Narayanaswamy, V., and N. T. Clemens. 2013. Simultaneous LII and PIV measurements in the soot formation region of turbulent non-premixed jet flames. Proc. Combust. Inst. 34(1):1455–63. doi:10.1016/j.proci.2012.06.018.
  • Ni, T., J. A. Pinson, S. Gupta, and R. J. Santoro. 1995. Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence. Appl. Opt. 34:7083–91. doi:10.1364/AO.34.007083.
  • Olofsson, N.-E., J. Johnsson, H. Bladh, and P.-E. Bengtsson. 2013. Soot sublimation studies in a premixed flat flame using laser-induced incandescence (LII) and elastic light scattering (ELS). Appl. Phys. B 112(3):333–42. doi:10.1007/s00340-013-5509-z.
  • Quay, B., T. W. Lee, T. Ni, and R. J. Santoro. 1994. Spatially resolved measurements of soot volume fraction using laser-induced incandescence. Combust. Flame 97(3–4):384–92. doi:10.1016/0010-2180(94)90029-9.
  • Ramanathan, V., and G. Carmichael. 2008. Global and regional climate changes due to black carbon. Nat. Geosci. 1(4):221–7. doi:10.1038/ngeo156.
  • Roussillo, M., P. Scouflaire, S. Candel, and B. Franzelli. 2019. Experimental investigation of soot production in a confined swirled flame operating under perfectly premixed rich conditions. Proc. Combust. Inst. 37(1):893–901. doi:10.1016/j.proci.2018.06.110.
  • Schulz, C., B. F. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bougie, R. Suntz, and G. Smallwood. 2006. Laser-induced incandescence: Recent trends and current questions. Appl. Phys. B 83(3):333–54. doi:10.1007/s00340-006-2260-8.
  • Shaddix, C. R., and K. C. Smyth. 1996. Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames. Combust. Flame 107(4):418–52. doi:10.1016/S0010-2180(96)00107-1.
  • Simonsson, J., A. Gunnarsson, M. N. Mannazhi, D. Bäckström, K. Andersson, and P. E. Bengtsson. 2019. In-situ soot characterization of propane flames and influence of additives in a 100 kW oxy-fuel furnace using two-dimensional laser-induced incandescence. Proc. Combust. Inst. 37(1):833–40. doi:10.1016/j.proci.2018.05.035.
  • Snelling, D. R., G. J. Smallwood, F. Liu, Ö. L. Gülder, and W. D. Bachalo. 2005. A calibration-independent laser-induced incandescence technique for soot measurement by detecting absolute light intensity. Appl. Opt. 44:6773–85. doi:10.1364/AO.44.006773.
  • Snelling, D. R., G. J. Smallwood, R. A. Sawchuk, W. S. Neill, D. Gareau, D. J. Clavel, W. L. Chippior, F. Liu, Ö. L. Gülder, and W. D. Bachalo. 2000. In-situ real-time characterization of particulate emissions from a diesel engine exhaust by laser-induced incandescence. SAE International.
  • Sun, Z. W., Z. T. Alwahabi, D. H. Gu, S. M. Mahmoud, G. J. Nathan, and B. B. Dally. 2015a. Planar laser-induced incandescence of turbulent sooting flames: The influence of beam steering and signal trapping. Appl. Phys. B 119(4):731–43. doi:10.1007/s00340-015-6080-6.
  • Sun, Z. W., D. H. Gu, G. J. Nathan, Z. T. Alwahabi, and B. B. Dally. 2015b. Single-shot, time-resolved planar laser-induced incandescence (TIRE-LII) for soot primary particle sizing in flames. Proc. Combust. Inst. 35 (3):3673–80. doi:10.1016/j.proci.2014.07.066.
  • Sweeney, M. S., S. Hochgreb, M. J. Dunn, and R. S. Barlow. 2012a. The structure of turbulent stratified and premixed methane/air flames, Part I: Non-swirling flows. Combust. Flame 159(9):2896–911. doi:10.1016/j.combustflame.2012.06.001.
  • Sweeney, M. S., S. Hochgreb, M. J. Dunn, and R. S. Barlow. 2012b. The structure of turbulent stratified and premixed methane/air flames, Part II: Swirling flows. Combust. Flame 159(9):2912–29. doi:10.1016/j.combustflame.2012.05.014.
  • Tian, B., Y. Gao, S. Balusamy, and S. Hochgreb. 2015. High spatial resolution laser cavity extinction and laser-induced incandescence in low-soot-producing flames. Appl. Phys. B 120(3):469–87. doi:10.1007/s00340-015-6156-3.
  • Tian, B., C. Zhang, Y. Gao, and S. Hochgreb. 2017. Planar 2-color time-resolved laser-induced incandescence measurements of soot in a diffusion flame. Aerosol Sci. Technol. 51(12):1345–53. doi:10.1080/02786826.2017.1366644.
  • USEPA, I. S. A. f. P. M. 2008. External review draft, USEPA, I. S. A. f. P. M., ed. Washington, DC.
  • Vander Wal, R. L. 1998. Calibration and comparison of laser-induced incandescence with cavity ring-down. Symp. Int. Combust. 27(1):59–67. doi:10.1016/S0082-0784(98)80390-1.
  • Wainner, R. T., J. M. Seitzman, and S. R. Martin. 1999. Soot measurements in a simulated engine exhaust using laser-induced incandescence. AIAA Journal 37(6):738–43. doi:10.2514/2.782.
  • Will, S., S. Schraml, K. Bader, and A. Leipertz. 1998. Performance characteristics of soot primary particle size measurements by time-resolved laser-induced incandescence. Appl. Opt. 37:5647–58. doi:10.1364/ao.37.005647.
  • Will, S., S. Schraml, and A. Leipert. 1996. Comprehensive two-dimensional soot diagnostics based on laser-induced incandescence (LII). Symp. Int. Combust. 26(2):2277–84. doi:10.1016/S0082-0784(96)80055-5.
  • Yon, J., J. J. Cruz, F. Escudero, J. Morán, F. Liu, and A. Fuentes. 2021. Revealing soot maturity based on multi-wavelength absorption/emission measurements in laminar axisymmetric coflow ethylene diffusion flames. Combust. Flame 227:147–61. doi:10.1016/j.combustflame.2020.12.049.
  • Zhu, J., M. Y. Choi, G. W. Mulholland, and L. A. Gritzo. 2000. Measurement of soot optical properties in the near-infrared spectrum. Int. J. Heat Mass Transfer 43(18):3299–303. doi:10.1016/S0017-9310(99)00382-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.