2,107
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Lithium-ion battery explosion aerosols: Morphology and elemental composition

, , , , &
Pages 1183-1201 | Received 03 Feb 2021, Accepted 15 May 2021, Published online: 07 Jul 2021

References

  • ACGIH, American Conference of Governmental Industrial Hygienists. 2014. TLVs and BEIs: Based on the documentation of the threshold limit values for chemical substances and physical agents & biological exposure indices. ACGIH Publication No. 0114, Cincinnati, OH.
  • ACGIH, American Conference of Governmental Industrial Hygienists. 2018. TLVs and BEIs: Based on the documentation of the threshold limit values for chemical substances and physical agents & biological exposure indices. ACGIH Publication No. 0118, Cincinnati, OH.
  • Adams, R. A., Mistry, A. N. A. N. Mukherjee, P. P. Pol, and V. G. 2019. Materials by design: Tailored morphology and structures of carbon anodes for enhanced battery safety. ACS Applied Materials & Interfaces 11 (14):13334–42. doi: 10.1021/acsami.9b02921.
  • ATSDR, Agency for Toxic Substances and Disease Registry. 2004. Toxicological profile for cobalt. U.S. Department of Health and Human Services, Public Health Service, Atlanta, GA.
  • ATSDR, Agency for Toxic Substances and Disease Registry. 2005. Toxicological profile for nickel. U.S. Department of Health and Human Services, Public Health Service, Atlanta, GA.
  • ATSDR, Agency for Toxic Substances and Disease Registry. 2008. Toxicological profile for aluminum. U.S. Department of Health and Human Services, Public Health Service, Atlanta, GA.
  • ATSDR, Agency for Toxic Substances and Disease Registry. 2012. Toxicological profile for manganese. U.S. Department of Health and Human Services, Public Health Service, Atlanta, GA.
  • Baird, A. R., E. J. Archibald, K. C. Marr, and O. A. Ezekoye. 2020. Explosion hazards from lithium-ion battery vent gas. Journal of Power Sources 446:227257. doi: 10.1016/j.jpowsour.2019.227257.
  • Balakrishnan, P. G., R. Ramesh, and T. P. Kumar. 2006. Safety mechanisms in lithium-ion batteries. Journal of Power Sources 155 (2):401–14. doi: 10.1016/j.jpowsour.2005.12.002.
  • Campion, C. L., W. Li, W. B. Euler, B. L. Lucht, B. Ravdel, J. F. DiCarlo, R. Gitzendanner, and K. M. Abraham. 2004. Suppression of toxic compounds produced in the decomposition of lithium-ion battery electrolytes. Electrochemical and Solid-State Letters 7 (7):A194. doi: 10.1149/1.1738551.
  • Ceder, G., Y. M. Chiang, D. R. Sadoway, M. K. Aydinol, Y. I. Jang, and B. Huang. 1998. Identification of cathode materials for lithium batteries guided by first-principles calculations. Nature 392 (6677):694–6. doi: 10.1038/33647.
  • CEN, European Committee for Standardization. 1993. Workplace atmospheres – Size fraction definitions for measurement of airborne particles. CEN Standard EN 481, CEN-CENELEC Management Centre, Brussels, Belgium.
  • Chen, S., Z. Wang, and W. Yan. 2020. Identification and characteristic analysis of powder ejected from a lithium ion battery during thermal runaway at elevated temperatures. Journal of Hazardous Materials 400:123169. doi: 10.1016/j.jhazmat.2020.123169.
  • Chen, S., Z. Wang, J. Wang, X. Tong, and W. Yan. 2020a. Lower explosion limit of the vented gases from Li-ion batteries thermal runaway in high temperature condition. Journal of Loss Prevention in the Process Industries 63:103992. doi: 10.1016/j.jlp.2019.103992.
  • Chen, S., Z. Wang, W. Yan, and J. Liu. 2020b. Investigation of impact pressure during thermal runaway of lithium ion battery in a semi-closed space. Applied Thermal Engineering 175:115429. doi: 10.1016/j.applthermaleng.2020.115429.
  • Donaldson, K., D. M. Brown, C. Mitchell, M. Dineva, P. H. Beswick, P. Gilmour, and W. MacNee. 1997. Free radical activity of PM10: Iron-mediated generation of hydroxyl radicals. Environmental Health Perspectives 105 (Suppl 5):1285–9. doi: 10.1289/ehp.97105s51285.
  • Duan, J., X. Tang, H. Dai, Y. Yang, W. Wu, X. Wei, and Y. Huang. 2020. Building safe lithium-ion batteries for electric vehicles: A review. Electrochemical Energy Reviews 3 (1):1–42. doi: 10.1007/s41918-019-00060-4.
  • Dubaniewicz, T. H., and J. P. DuCarme. 2013. Are lithium ion cells intrinsically safe? IEEE Transactions on Industry Applications 49 (6):2451–60. doi: 10.1109/TIA.2013.2263274.
  • Dubaniewicz, T. H., I. Zlochower, T. Barone, R. Thomas, and L. Yuan. 2021. Thermal runaway pressures of iron phosphate lithium-ion cells as a function of free space within sealed enclosures. Mining, Metallurgy & Exploration 38 (1):539–47. doi: 10.1007/s42461-020-00349-9.
  • FAA, Office of Security and Hazardous Materials Safety. 2020. Events with smoke, fire, extreme heat or explosion involving lithium batteries. Battery Incident Chart. Accessed December 16, 2020. https://www.faa.gov/hazmat/resources/lithium_batteries/media/Battery_incident_chart.pdf.
  • Harris, S. J., A. Timmons, and W. J. Pitz. 2009. A combustion chemistry analysis of carbonate solvents used in Li-ion batteries. Journal of Power Sources 193 (2):855–8. doi: 10.1016/j.jpowsour.2009.04.030.
  • ISO, International Organization for Standardization. 1995. Air quality—particle size fraction definitions for health-related sampling. ISO 7708:1995. International Organization for Standardization, Geneva, Switzerland.
  • Jiménez, L. A., J. Thompson, D. A. Brown, I. Rahman, F. Antonicelli, R. Duffin, E. M. Drost, R. T. Hay, K. Donaldson, and W. MacNee. 2000. Activation of NF-κB by PM10 occurs via an iron-mediated mechanism in the absence of IκB degradation. Toxicology and Applied Pharmacology 166 (2):101–10. doi: 10.1006/taap.2000.8957.
  • Knaapen, A. M., T. Shi, P. J. Borm, and R. P. Schins. 2002. Soluble metals as well as the insoluble particle fraction are involved in cellular DNA damage induced by particulate matter. In Oxygen/nitrogen radicals: Cell injury and disease, ed. V. Vallyathan, V. Castranova, and X. Shi, 317–26. Boston, MA: Springer.
  • Larsson, F., P. Andersson, P. Blomqvist, and B. E. Mellander. 2017. Toxic fluoride gas emissions from lithium-ion battery fires. Scientific Reports 7 (1):1–13. doi: 10.1038/s41598-017-09784-z.
  • Liao, Z., S. Zhang, K. Li, G. Zhang, and T. G. Habetler. 2019. A survey of methods for monitoring and detecting thermal runaway of lithium-ion batteries. Journal of Power Sources 436:226879. doi: 10.1016/j.jpowsour.2019.226879.
  • Loveridge, M., G. Remy, N. Kourra, R. Genieser, A. Barai, M. Lain, Y. Guo, M. Amor-Segan, M. Williams, T. Amietszajew, et al. 2018. Looking deeper into the Galaxy (Note 7). Batteries 4 (1):3. doi: 10.3390/batteries4010003.
  • Mao, N., Z. R. Wang, Y. H. Chung, and C. M. Shu. 2019. Overcharge cycling effect on the thermal behavior, structure, and material of lithium-ion batteries. Applied Thermal Engineering 163:114147. doi: 10.1016/j.applthermaleng.2019.114147.
  • Masoud, E. M., and S. Indris. 2015. Block-shaped pure and doped Li4Ti5O12 containing a high content of a Li2TiO3 dual phase: An anode with excellent cycle life for high rate performance lithium-ion batteries. RSC Advances 5 (130):108058–66. doi: 10.1039/C5RA22745C.
  • Massé, R. C., Liu, C. Y. Li, L. Mai, and G. Cao. 2017. Energy storage through intercalation reactions: Electrodes for rechargeable batteries. National Science Review 4 (1):26–53. doi: 10.1093/nsr/nww093.
  • Miller, L., and R. R. Carriveau. 2019. Energy demand curve variables – An overview of individual and systemic effects. Sustainable Energy Technologies and Assessments 35:172–9. doi: 10.1016/j.seta.2019.07.006.
  • Nestler, T., R. Schmid, W. Münchgesang, V. Bazhenov, J. Schilm, T. Leisegang, and D. C. Meyer. 2014. Separators-technology review: Ceramic based separators for secondary batteries. American Institute of Physics Conference Proceedings 1597 (1):155–84.
  • NIOSH, National Institute for Occupational Safety and Health. 1994. NIOSH pocket guide to chemical hazards. National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, U.S. Dept. of Health and Human Services, Washington, DC.
  • Nitta, N., F. Wu, J. T. Lee, and G. Yushin. 2015. Li-ion battery materials: Present and future. Materials Today 18 (5):252–64. doi: 10.1016/j.mattod.2014.10.040.
  • NTSB, National Transportation Safety Board. 2014. Auxiliary power unit battery fire Japan airlines Boeing 787-8, JA829J, Boston, Massachusetts, January 7, 2013. NTSB/AIR-14/01, Washington, DC. https://ntsb.gov/investigations/AccidentReports/Reports/AIR1401.pdf.
  • Paraszczak, J., E. Svedlund, K. Fytas, and M. Laflamme. 2014. Electrification of loaders and trucks – a step towards more sustainable underground mining. REPQJ 1 (12):81–6. doi: 10.24084/repqj12.240.
  • Park, Y. S., and S. M. Lee. 2009. Effects of particle size on the thermal stability of lithiated graphite anode. Electrochimica Acta 54 (12):3339–43. doi: 10.1016/j.electacta.2008.12.030.
  • Peng, Y., L. Yang, X. Ju, B. Liao, K. Ye, L. Li, B. Cao, and Y. Ni. 2020. A comprehensive investigation on the thermal and toxic hazards of large format lithium-ion batteries with LiFePO4 cathode. Journal of Hazardous Materials 381:120916. doi: 10.1016/j.jhazmat.2019.120916.
  • Pfrang, A., A. Kriston, V. Ruiz, N. Lebedeva, and F. di Persio. 2017. Safety of rechargeable energy storage systems with a focus on Li-ion technology. In Emerging nanotechnologies in rechargeable energy storage systems, ed. L. M. Rodriguez-Martinez and N. Omar, 253–90. Boston, MA: Elsevier.
  • Raja, M., G. Sanjeev, T. P. Kumar, and A. M. Stephan. 2015. Lithium aluminate-based ceramic membranes as separators for lithium-ion batteries. Ceramics International 41 (2):3045–50. doi: 10.1016/j.ceramint.2014.10.142.
  • Ranjbar, N., and C. Kuenzel. 2017. Cenospheres: A review. Fuel 207:1–12. doi: 10.1016/j.fuel.2017.06.059.
  • Ruiz, V., and A. Pfrang. 2018. JRC exploratory research: Safer Li-ion batteries by preventing thermal propagation-Workshop report: Summary & outcomes. Publications Office of the European Union, Luxembourg.
  • Samsung. 2017. Galaxy Note7: What we discovered. Accessed December 16, 2020. https://news.samsung.com/global/infographic-galaxy-note7-what-we-discovered.
  • Sony. 2006. Statement regarding Sony’s support of Apple’s recall of lithium ion battery packs used in apple notebook computers. Accessed December 16, 2020. https://sony.net/SonyInfo/News/Press/200608/06-0825E/.
  • Sun, J., J. Li, T. Zhou, K. Yang, S. Wei, N. Tang, N. Dang, H. Li, X. Qiu, and L. Chen. 2016. Toxicity, a serious concern of thermal runaway from commercial Li-ion battery. Nano Energy 27:313–9. doi: 10.1016/j.nanoen.2016.06.031.
  • Valavanidis, A., A. Salika, and A. Theodoropoulou. 2000. Generation of hydroxyl radicals by urban suspended particulate air matter. The role of iron ions. Atmospheric Environment 34 (15):2379–86. doi: 10.1016/S1352-2310(99)00435-5.
  • Varaschin, J., and E. De Souza. 2015. Economics of diesel fleet replacement by electric mining equipment. Proceedings of the 15th North American Mine Ventilation Symposium: 328–35. https://vtechworks.lib.vt.edu/handle/10919/89645.
  • Wang, Q., P. Ping, X. Zhao, G. Chu, J. Sun, and C. Chen. 2012. Thermal runaway caused fire and explosion of lithium ion battery. Journal of Power Sources 208:210–24. doi: 10.1016/j.jpowsour.2012.02.038.
  • Wierzbicki, T., and E. Sahraei. 2013. Homogenized mechanical properties for the jellyroll of cylindrical Lithium-ion cells. Journal of Power Sources 241:467–76. doi: 10.1016/j.jpowsour.2013.04.135.
  • Wilson, M. R., J. H. Lightbody, K. Donaldson, J. Sales, and V. Stone. 2002. Interactions between ultrafine particles and transition metals in vivo and in vitro. Toxicology and Applied Pharmacology 184 (3):172–9. doi: 10.1006/taap.2002.9501.
  • Yang, Y., Z. Wang, P. Guo, S. Chen, H. Bian, X. Tong, and L. Ni. 2021. Carbon oxides emissions from lithium-ion batteries under thermal runaway from measurements and predictive model. Journal of Energy Storage 33:101863. doi: 10.1016/j.est.2020.101863.
  • Yim, C. H., F. M. Courtel, and Y. Abu-Lebdeh. 2013. A high capacity silicon–graphite composite as anode for lithium-ion batteries using low content amorphous silicon and compatible binders. Journal of Materials Chemistry A 1 (28):8234–43. doi: 10.1039/c3ta10883j.
  • Yuan, L., T. Dubaniewicz, I. Zlochower, R. Thomas, and N. Rayyan. 2020. Experimental study on thermal runaway and vented gases of lithium-ion cells. Process Safety and Environmental Protection 144:186–92. doi: 10.1016/j.psep.2020.07.028.
  • Zhao, W., G. Luo, and C. Y. Wang. 2015. Modeling internal shorting process in large-format Li-ion cells. Journal of the Electrochemical Society 162 (7):A1352–A1364. doi: 10.1149/2.1031507jes.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.