915
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

A broadband cavity-enhanced spectrometer for atmospheric aerosol light extinction measurements

ORCID Icon, , ORCID Icon, ORCID Icon, , , ORCID Icon, ORCID Icon, , , ORCID Icon & ORCID Icon show all
Pages 1264-1276 | Received 04 Mar 2021, Accepted 08 Jun 2021, Published online: 13 Jul 2021

References

  • Abo Riziq, A., C. Erlick, E. Dinar, Y. Rudich, A. A. Riziq, C. Erlick, E. Dinar, and Y. Rudich. 2006. Optical properties of absorbing and non-absorbing aerosols retrieved by cavity ring down (CRD) spectroscopy. Atmos. Chem. Phys. Discuss. 6 (6):12347–87.
  • Anderson, T. L., D. S. Covert, S. F. Marshall, M. L. Laucks, R. J. Charlson, A. P. Waggoner, J. A. Ogren, R. Caldow, R. L. Holm, F. R. Quant, et al. 1996. Performance characteristics of a high-sensitivity, three-wavelength, total scatter/backscatter nephelometer. J. Atmos. Oceanic Technol. 13 (5):967–86. doi:10.1175/1520-0426(1996)013<0967:PCOAHS>2.0.CO;2.
  • Arnott, W. P., K. Hamasha, H. Moosmüller, P. J. Sheridan, and J. A. Ogren. 2005. Towards aerosol light-absorption measurements with a 7-wavelength aethalometer: Evaluation with a photoacoustic instrument and 3-wavelength nephelometer. Aerosol Sci. Technol. 39 (1):17–29. doi:10.1080/027868290901972.
  • Arnott, W. P., H. Moosmüller, P. J. Sheridan, J. A. Ogren, R. Raspet, W. V. Slaton, J. L. Hand, S. M. Kreidenweis, and J. L. Collett. 2003. Photoacoustic and filter-based ambient aerosol light absorption measurements: Instrument comparisons and the role of relative humidity. J. Geophys. Res. 108 (D1):AAC-15. doi:10.1029/2002JD002165.
  • Baynard, T., E. R. Lovejoy, A. Pettersson, S. S. Brown, D. Lack, H. Osthoff, P. Massoli, S. Ciciora, W. P. Dube, and A. R. Ravishankara. 2007. Design and application of a pulsed cavity ring-down aerosol extinction spectrometer for field measurements. Aerosol Sci. Technol. 41 (4):447–62. doi:10.1080/02786820701222801.
  • Bond, T. C., T. L. Anderson, and D. Campbell. 1999. Calibration and intercomparison of filter-based measurements of visible light absorption by aerosols. Aerosol Sci. Technol. 30 (6):582–600. doi:10.1080/027868299304435.
  • Bond, T. C., D. S. Covert, and T. Muller. 2009. Truncation and angular-scattering corrections for absorbing aerosol in the TSI 3563 nephelometer. Aerosol Sci. Technol. 43 (9):866–71. doi:10.1080/02786820902998373.
  • Cachorro, V. E., A. M. de Frutos, and J. L. Casanova. 1987. Determination of the Angstrom turbidity parameters. Appl. Opt. 26 (15):3069–76. doi:10.1364/AO.26.003069.
  • Cappa, C. D., D. A. Lack, J. B. Burkholder, and A. R. Ravishankara. 2008. Bias in filter-based aerosol light absorption measurements due to organic aerosol loading: Evidence from laboratory measurements. Aerosol Sci. Technol. 42 (12):1022–32. doi:10.1080/02786820802389285.
  • Chandran, P. M. S., C. P. Krishnakumar, W. Yuen, M. J. Rood, and R. Varma. 2011. An open-path laser transmissometer for atmospheric extinction measurements. AIP Conf. Proc. 1391:288– 90.
  • Chartier, R. T., and M. E. Greenslade. 2012. Initial investigation of the wavelength dependence of optical properties measured with a new multi-pass aerosol extinction differential optical absorption spectrometer (AE-DOAS). Atmos. Meas. Tech. 5 (4):709–21. doi:10.5194/amt-5-709-2012.
  • Chen, J., and D. S. Venables. 2011. A broadband optical cavity spectrometer for measuring weak near-ultraviolet absorption spectra of gases. Atmos. Meas. Tech. 4 (3):425–36. doi:10.5194/amt-4-425-2011.
  • Chen, Y., and T. C. Bond. 2010. Light absorption by organic carbon from wood combustion. Atmos. Chem. Phys. 10 (4):1773–87. doi:10.5194/acp-10-1773-2010.
  • Cuomo, V., F. Esposito, G. Pavese, and C. Serio. 1993. Determining Ångström’s turbidity coefficients: An analysis with a wide-range grating spectrometer. Aerosol Sci. Technol. 18 (1):59–69. doi:10.1080/02786829308959584.
  • Fiedler, S. E., A. Hese, and A. A. Ruth. 2003. Incoherent broad-band cavity-enhanced absorption spectroscopy. Chem. Phys. Lett. 371 (3-4):284–94. doi:10.1016/S0009-2614(03)00263-X.
  • Flores, J. M., M. Trainic, S. Borrmann, and Y. Rudich. 2009. Effective broadband refractive index retrieval by a white light optical particle counter. Phys. Chem. Chem. Phys. 11 (36):7943–50. doi:10.1039/b905292e.
  • Gherman, T., D. S. Venables, S. Vaughan, J. Orphal, and A. A. Ruth. 2008. Incoherent broadband cavity-enhanced absorption spectroscopy in the near-ultraviolet: Application to HONO and NO2. Environ. Sci. Technol. 42 (3):890–5. doi:10.1021/es0716913.
  • Heintzenberg, J., and R. J. Charlson. 1996. Design and applications of the integrating nephelometer: A review. J. Atmos. Oceanic Technol. 13 (5):987–1000. doi:10.1175/1520-0426(1996)013<0987:DAAOTI>2.0.CO;2.
  • Hobbs, P. V., J. S. Reid, R. A. Kotchenruther, R. J. Ferek, and R. Weiss. 1997. Direct radiative forcing by smoke from biomass burning. Science 275 (5307):1776–8. doi:10.1126/science.275.5307.1777.
  • Jordan, C. E., B. E. Anderson, A. J. Beyersdorf, C. A. Corr, J. E. Dibb, M. E. Greenslade, R. F. Martin, R. H. Moore, E. Scheuer, M. A. Shook, et al. 2015. Spectral aerosol extinction (SpEx): A new instrument for in situ ambient aerosol extinction measurements across the UV/visible wavelength range. Atmos. Meas. Tech. 8 (11):4755–71. doi:10.5194/amt-8-4755-2015.
  • Keller-Rudek, H., G. K. Moortgat, R. Sander, and R. Sörensen. 2013. The MPI-Mainz UV/VIS spectral atlas of gaseous molecules of atmospheric interest. Earth Syst. Sci. Data 5 (2):365–73. doi:10.5194/essd-5-365-2013.
  • Lack, D. A., E. R. Lovejoy, T. Baynard, A. Pettersson, and A. R. Ravishankara. 2006. Aerosol absorption measurement using photoacoustic spectroscopy: Sensitivity, calibration, and uncertainty developments. Aerosol Sci. Technol. 40 (9):697–708. doi:10.1080/02786820600803917.
  • Langridge, J. M., M. S. Richardson, D. A. Lack, C. A. Brock, and D. M. Murphy. 2013. Limitations of the photoacoustic technique for aerosol absorption measurement at high relative humidity. Aerosol Sci. Technol. 47 (11):1163–73. doi:10.1080/02786826.2013.827324.
  • Langridge, J. M., M. S. Richardson, D. Lack, D. Law, and D. M. Murphy. 2011. Aircraft instrument for comprehensive characterization of aerosol optical properties, part I: Wavelength-dependent optical extinction and its relative humidity dependence measured using cavity ringdown spectroscopy. Aerosol Sci. Technol. 45 (11):1305–18. doi:10.1080/02786826.2011.592745.
  • Li, J., W. Wang, K. Li, W. Zhang, M. Ge, and C. Peng. 2019. Development and application of the multi-wavelength cavity ring-down aerosol extinction spectrometer. J. Environ. Sci. (China) 76:227–37. doi:10.1016/j.jes.2018.04.030.
  • Li, Z., R. Hu, P. Xie, H. Chen, X. Liu, S. Liang, D. Wang, F. Wang, Y. Wang, C. Lin, et al. 2019. Simultaneous measurement of NO and NO2 by a dual-channel cavity ring-down spectroscopy technique. Atmos. Meas. Tech. 12 (6):3223–36. doi:10.5194/amt-12-3223-2019.
  • Massoli, P., P. L. Kebabian, T. B. Onasch, F. B. Hills, and A. Freedman. 2010. Aerosol light extinction measurements by cavity attenuated phase shift (CAPS) spectroscopy: Laboratory validation and field deployment of a compact aerosol particle extinction monitor. Aerosol Sci. Technol. 44 (6):428–35. doi:10.1080/02786821003716599.
  • Miles, R. E. H., S. Rudic, A. J. Orr-Ewing, and J. P. Reid. 2011. Sources of error and uncertainty in the use of cavity ring down spectroscopy to measure aerosol optical properties. Aerosol Sci. Technol. 45 (11):1360–75. doi:10.1080/02786826.2011.596170.
  • Mo, Y., J. Li, J. Liu, G. Zhong, Z. Cheng, C. Tian, Y. Chen, and G. Zhang. 2017. The influence of solvent and pH on determination of the light absorption properties of water-soluble brown carbon. Atmos. Environ 161:90–8. doi:10.1016/j.atmosenv.2017.04.037.
  • Mogili, P. K., K. H. Yang, M. A. Young, P. D. Kleiber, and V. H. Grassian. 2007. Environmental aerosol chamber studies of extinction spectra of mineral dust aerosol components: Broadband IR-UV extinction spectra. J. Geophys. Res. 112 (D21):D21204. doi:10.1029/2007JD008890.
  • Moosmüller, H., and W. P. Arnott. 2003. Angular truncation errors in integrating nephelometry. Rev. Sci. Instrum. 74 (7):3492–501. doi:10.1063/1.1581355.
  • Moosmüller, H., and R. K. Chakrabarty. 2011. Technical note: Simple analytical relationships between Ångström coefficients of aerosol extinction, scattering, absorption, and single scattering albedo. Atmos. Chem. Phys. 11 (20):10677–80. doi:10.5194/acp-11-10677-2011.
  • Moosmüller, H., R. Varma, W. P. Arnott, and M. Moosmüller. 2005. Cavity ring-down and cavity-enhanced detection techniques for the measurement of aerosol extinction. Aerosol Sci. Technol. 39 (1):30–9. doi:10.1080/027868290903880.
  • Petzold, A., T. Onasch, P. Kebabian, and A. Freedman. 2013. Intercomparison of a cavity attenuated phase shift-based extinction monitor (CAPS PMex) with an integrating nephelometer and a filter-based absorption monitor. Atmos. Meas. Tech. 6 (5):1141–51. doi:10.5194/amt-6-1141-2013.
  • Petzold, A., H. Schloesser, P. J. Sheridan, W. P. Arnott, J. A. Ogren, and A. Virkkula. 2005. Evaluation of multiangle absorption photometry for measuring aerosol light absorption. Aerosol Sci. Technol. 39 (1):40–51. doi:10.1080/027868290901945.
  • Reid, J. S., P. V. Hobbs, R. J. Ferek, D. R. Blake, J. V. Martins, M. R. Dunlap, and C. Liousse. 1998. Physical, chemical, and optical properties of regional hazes dominated by smoke in Brazil. J. Geophys. Res. 103 (D24):32059–80. doi:10.1029/98JD00458.
  • Saseendran, A., S. Mathai, S. Joshi, A. Pakkattil, T. Capek, G. Kinney, C. Mazzoleni, and R. Varma. 2020. Dual-cavity spectrometer for monitoring broadband light extinction by atmospheric aerosols. Aerosol Sci. Technol. 54 (10):1183–96. doi:10.1080/02786826.2020.1763249.
  • Schnaiter, M., O. Schmid, A. Petzold, L. Fritzsche, K. F. Klein, M. O. Andreae, G. Helas, A. Thielmann, M. Gimmler, O. Möhler, et al. 2005. Measurement of wavelength-resolved light absorption by aerosols utilizing a UV-VIS extinction cell. Aerosol Sci. Technol. 39 (3):249–60. doi:10.1080/027868290925958.
  • Sedlacek, A., and J. Lee. 2007. Photothermal interferometric aerosol absorption spectrometry. Aerosol Sci. Technol. 41 (12):1089–101. doi:10.1080/02786820701697812.
  • Sharma, N., I. J. Arnold, H. Moosmüller, W. P. Arnott, and C. Mazzoleni. 2013. Photoacoustic and nephelometric spectroscopy of aerosol optical properties with a supercontinuum light source. Atmos. Meas. Tech. 6 (12):3501–13. doi:10.5194/amt-6-3501-2013.
  • Shetty, N. J., A. Pandey, S. Baker, W. M. Hao, and R. K. Chakrabarty. 2019. Measuring light absorption by freshly emitted organic aerosols: Optical artifacts in traditional solvent-extraction-based methods. Atmos. Chem. Phys. 19 (13):8817–30. doi:10.5194/acp-19-8817-2019.
  • Smith, J. D., and D. B. Atkinson. 2001. A portable pulsed cavity ring-down transmissometer for measurement of the optical extinction of the atmospheric aerosol. Analyst 126 (8):1216–20. doi:10.1039/b101491i.
  • Spindler, C., A. A. Riziq, and Y. Rudich. 2007. Retrieval of aerosol complex refractive index by combining cavity ring down aerosol spectrometer measurements with full size distribution information. Aerosol Sci. Technol. 41 (11):1011–7. doi:10.1080/02786820701682087.
  • Strawa, A. W., R. Elleman, A. G. Hallar, D. Covert, K. Ricci, R. Provencal, T. W. Owano, H. H. Jonsson, B. Schmid, A. P. Luu, et al. 2006. Comparison of in situ aerosol extinction and scattering coefficient measurements made during the aerosol intensive operating period. J. Geophys. Res. 111 (D5):5–8. doi:10.1029/2005JD006056.
  • Suhail, K., M. George, S. Chandran, R. Varma, D. S. Venables, M. Wang, and J. Chen. 2019. Open path incoherent broadband cavity-enhanced measurements of NO3 radical and aerosol extinction in the North China Plain. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 208:24–31. doi:10.1016/j.saa.2018.09.023.
  • Thalman, R., and R. Volkamer. 2010. Inherent calibration of a novel LED-CE-DOAS instrument to measure iodine oxide, glyoxal, methyl glyoxal, nitrogen dioxide, water vapour and aerosol extinction in open cavity mode. Atmos. Meas. Tech. Discuss. 3 (3):2681–721.
  • Thompson, J. E., H. D. Nasajpour, B. W. Smith, and J. D. Winefordner. 2003. Atmospheric aerosol measurements by cavity ringdown turbidimetry. Aerosol Sci. Technol. 37 (3):221–30. doi:10.1080/02786820300942.
  • Varma, R., H. Moosmüller, and W. P. Arnott. 2003. Toward an ideal integrating nephelometer. Opt. Lett. 28 (12):1007–9. doi:10.1364/ol.28.001007.
  • Varma, R. M., S. M. Ball, T. Brauers, H. P. Dorn, U. Heitmann, R. L. Jones, U. Platt, D. Pöhler, A. A. Ruth, A. J. L. Shillings, et al. 2013. Light extinction by secondary organic aerosol: An intercomparison of three broadband cavity spectrometers. Atmos. Meas. Tech. 6 (11):3115–30. doi:10.5194/amt-6-3115-2013.
  • Varma, R. M., D. S. Venables, A. A. Ruth, U. Heitmann, E. Schlosser, and S. Dixneuf. 2009. Long optical cavities for open-path monitoring of atmospheric trace gases and aerosol extinction. Appl. Opt. 48 (4):B159–171. doi:10.1364/AO.48.00B159.
  • Venables, D. S., T. Gherman, J. Orphal, J. C. Wenger, and A. A. Ruth. 2006. High sensitivity in situ monitoring of NO3 in an atmospheric simulation chamber using incoherent broadband cavity-enhanced absorption. Environ. Sci. Technol. 40 (21):6758–63. doi:10.1021/es061076j.
  • Ventrillard-Courtillot, I., E. Sciamma O’Brien, S. Kassi, G. Méjean, and D. Romanini. 2010. Incoherent broad-band cavity-enhanced absorption spectroscopy for simultaneous trace measurements of NO2 and NO3 with a LED source. Appl. Phys. B. 101 (3):661–9. doi:10.1007/s00340-010-4253-x.
  • Virkkula, A., N. C. Ahlquist, D. S. Covert, P. J. Sheridan, W. P. Arnott, and J. A. Ogren. 2005. A three-wavelength optical extinction cell for measuring aerosol light extinction and its application to determining light absorption coefficient. Aerosol Sci. Technol. 39 (1):52–67. doi:10.1080/027868290901918.
  • Washenfelder, R. A., J. M. Flores, C. A. Brock, S. S. Brown, and Y. Rudich. 2013. Broadband measurements of aerosol extinction in the ultraviolet spectral region. Atmos. Meas. Tech. 6 (4):861–77. doi:10.5194/amt-6-861-2013.
  • Washenfelder, R. A., A. O. Langford, H. Fuchs, and S. S. Brown. 2008. Measurement of glyoxal using an incoherent broadband cavity enhanced absorption spectrometer. Atmos. Chem. Phys. 8 (24):7779–93. doi:10.5194/acp-8-7779-2008.
  • Weingartner, E., H. Saathoff, M. Schnaiter, N. Streit, B. Bitnar, and U. Baltensperger. 2003. Absorption of light by soot particles: Determination of the absorption coefficient by means of aethalometers. J. Aerosol Sci. 34 (10):1445–63. doi:10.1016/S0021-8502(03)00359-8.
  • Wiegand, J. R., L. D. Mathews, and G. D. Smith. 2014. A UV-vis photoacoustic spectrophotometer. Anal. Chem. 86 (12):6049–56. doi:10.1021/ac501196u.
  • Wu, T., W. Chen, E. Fertein, F. Cazier, D. Dewaele, X. Gao, E. Fertein, and F. Cazier. 2012. Development of an open-path incoherent broadband cavity-enhanced spectroscopy based instrument for simultaneous measurement of HONO and NO2 in ambient air. Appl. Phys. B. 106 (2):501–9. doi:10.1007/s00340-011-4818-3.
  • Zhao, W., M. Dong, W. Chen, X. Gu, C. Hu, X. Gao, W. Huang, and W. Zhang. 2013. Wavelength-resolved optical extinction measurements of aerosols using broad-band cavity-enhanced absorption spectroscopy over the spectral range of 445-480 nm. Anal. Chem. 85 (4):2260–8. doi:10.1021/ac303174n.
  • Zhao, W., X. Xu, M. Dong, W. Chen, X. Gu, C. Hu, Y. Huang, X. Gao, W. Huang, and W. Zhang. 2014. Development of a cavity-enhanced aerosol albedometer. Atmos. Meas. Tech. 7 (8):2551–66. doi:10.5194/amt-7-2551-2014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.