956
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Comparison of black carbon measurement techniques for marine engine emissions using three marine fuel types

ORCID Icon, ORCID Icon, , , ORCID Icon, , , , & ORCID Icon show all
Pages 46-62 | Received 31 Mar 2021, Accepted 30 Jul 2021, Published online: 08 Sep 2021

References

  • Aakko-Saksa, P., P. Koponen, M. Aurela, H. Vesala, P. Piimäkorpi, T. Murtonen, O. Sippula, H. Koponen, P. Karjalainen, N. Kuittinen, et al. 2018. Considerations in analysing elemental carbon from marine engine exhaust using residual, distillate and biofuels. J. Aerosol Sci. 126:191–204. doi: 10.1016/j.jaerosci.2018.09.005.
  • Adachi, K., S. H. Chung, and P. R. Buseck. 2010. Shapes of soot aerosol particles and implications for their effects on climate. J. Geophys. Res. 115 (D15):D15206. doi: 10.1029/2009JD012868.
  • Andersson, J., B. Giechaskiel, R. Munoz-Bueno, E. Sandbach, and P. Dilara. 2007. Particle measurement programme (PMP) light-duty inter-laboratory correlation exercise (ILCE_LD) final report. Institute for Environment and Sustainability. EUR 22775:2034–42.
  • Andersson, J., A. Mamakos, B. Giechaskiel, M. Carriero, and G. Martini. 2010. Particle measurement programme (PMP) heavy-duty inter-laboratory correlation exercise (ILCE_HD) final report. Final Report. Joint Research Center. Ispra (VA). EUR, 24561. Luxembourg: Publications Office of the European Union.
  • Azzara, A., R. Minjares, and D. Rutherford. 2015. Needs and opportunities to reduce black carbon emissions from maritime shipping. ICCT Working Paper 2015-2. //theicct.org/sites/default/files/publications/ICCT_black-carbon-maritime-shipping_20150324.pdf
  • Bond, T. C., and R. W. Bergstrom. 2006. Light absorption by carbonaceous particles: An investigative review. Aerosol Sci. Technol. 40 (1):27–67. doi: 10.1080/02786820500421521.
  • Bond, T. C., S. J. Doherty, D. W. Fahey, P. M. Forster, T. Berntsen, B. J. DeAngelo, M. G. Flanner, S. Ghan, B. Kärcher, D. Koch, et al. 2013. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res: Atmos. 118:5380–552.
  • Buffaloe, G. M., D. A. Lack, E. J. Williams, D. Coffman, K. L. Hayden, B. M. Lerner, S.-M. Li, I. Nuaaman, P. Massoli, T. B. Onasch, et al. 2014. Black carbon emissions from in-use ships: a California regional assessment. Atmos. Chem. Phys. 14 (4):1881–96., doi: 10.5194/acp-14-1881-2014.
  • Cavalli, F., M. Viana, K. E. Yttri, J. Genberg, and J. P. Putaud. 2010. Toward a standardised thermal-optical protocol for measuring atmospheric organic and elemental carbon: the EUSAAR protocol. Atmos. Meas. Tech. 3 (1):79–89. doi: 10.5194/amt-3-79-2010.
  • Chase, R. E., G. J. Duszkiewicz, J. F. Richert, D. Lewis, M. M. Maricq, and N. Xu. 2004. PM measurement artifact: organic vapor deposition on different filter media. SAE Technical Paper No. 2004-01-0967.
  • Chow, J. C., J. G. Watson, L. W. A. Chen, M. O. Chang, N. F. Robinson, D. Trimble, and S. Kohl. 2007. The IMPROVE_A temperature protocol for thermal/optical carbon analysis: maintaining consistency with a long-term database. J Air Waste Manag. Assoc. 57 (9):1014–23. doi: 10.3155/1047-3289.57.9.1014.
  • Chow, J. C., J. G. Watson, D. Crow, D. H. Lowenthal, and T. Merrifield. 2001. Comparison of IMPROVE and NIOSH carbon measurements. Aerosol Science & Technology 34 (1):23–34. doi: 10.1080/02786820119073.
  • Corbin, J. C., H. Czech, D. Massabò, F. Buatier de Mongeot, G. Jakobi, F. Liu, P. Lobo, C. Mennucci, A. A. Mensah, J. Orasche, et al. 2019. Infrared-absorbing carbonaceous tar can dominate light absorption by marine-engine exhaust. Npj Clim. Atmos. Sci. 2 (1):1–10. doi: 10.1038/s41612-019-0069-5.
  • Corbin, J. C., and M. Gysel-Beer. 2019. Detection of tar brown carbon with a single particle soot photometer (SP2). Atmos. Chem. Phys. 19 (24):15673–90. doi: 10.5194/acp-19-15673-2019.
  • Corbin, J. C., A. A. Mensah, S. M. Pieber, J. Orasche, B. Michalke, M. Zanatta, H. Czech, D. Massabò, F. Buatier de Mongeot, C. Mennucci, et al. 2018. Trace metals in soot and PM2.5 from heavy-fuel-oil combustion in a marine engine. Environ. Sci. Technol. 52 (11):6714–22. doi: 10.1021/acs.est.8b01764.
  • Crayford, A. P., M. P. Johnson, Y. A. Sevcenco, P. I. Williams, P. Madden, R. Marsh, 2014. and, and P. J. Bowen. Studying, sAmpling and measuring of aircraft ParticuLate emissions III - specific Contract 05: SAMPLE III - SC.05. Cologne: European Aviation Safety Agency. https://www.easa.europa.eu/document-library/research-reports/easa2010fc10-sc05.
  • Dastanpour, R., A. Momenimovahed, K. Thomson, J. S. Olfert, and S. Rogak. 2017. Variation of the optical properties of soot as a function of particle mass. Carbon 124:201–11. doi: 10.1016/j.carbon.2017.07.005.
  • Dastanpour, R., and S. N. Rogak. 2014. Observations of a correlation between primary particle and aggregate size for soot particles. Aerosol Sci. Technol. 48 (10):1043–9. doi: 10.1080/02786826.2014.955565.
  • Dickau, M., T. J. Johnson, K. Thomson, G. Smallwood, and J. S. Olfert. 2015. Demonstration of the CPMA-electrometer system for calibrating black carbon particulate mass instruments. Aerosol Sci. Technol. 49 (3):152–8. doi: 10.1080/02786826.2015.1010033.
  • Donateo, A., E. Gregoris, A. Gambaro, E. Merico, R. Giua, A. Nocioni, and D. Contini. 2014. Contribution of harbour activities and ship traffic to PM2.5, particle number concentrations and PAHs in a port city of the Mediterranean Sea (Italy). Environ. Sci. Pollut. Res. 21 (15):9415–29. doi: 10.1007/s11356-014-2849-0.
  • Drinovec, L., G. Močnik, P. Zotter, A. S. H. Prévôt, C. Ruckstuhl, E. Coz, M. Rupakheti, J. Sciare, T. Müller, A. Wiedensohler, et al. 2015. The "dual-spot" Aethalometer: an improved measurement of aerosol black carbon with real-time loading compensation. Atmos. Meas. Tech. 8 (5):1965–79. doi: 10.5194/amt-8-1965-2015.
  • Durdina, L., P. Lobo, M. B. Trueblood, E. A. Black, S. Achterberg, D. E. Hagen, B. T. Brem, and J. Wang. 2016. Response of real-time black carbon mass instruments to mini-CAST soot. Aerosol Sci. Technol. 50 (9):906–18. doi: 10.1080/02786826.2016.1204423.
  • Eyring, V., I. S. Isaksen, T. Berntsen, W. J. Collins, J. J. Corbett, O. Endresen, R. G. Grainger, J. Moldanova, H. Schlager, and D. S. Stevenson. 2010. Transport impacts on atmosphere and climate: Shipping. Atmos. Environ. 44 (37):4735–71. doi: 10.1016/j.atmosenv.2009.04.059.
  • Fujitani, Y., K. Saitoh, A. Fushimi, K. Takahashi, S. Hasegawa, K. Tanabe, S. Kobayashi, A. Furuyama, S. Hirano, and A. Takami. 2012. Effect of isothermal dilution on emission factors of organic carbon and n-alkanes in the particle and gas phases of diesel exhaust. Atmos. Environ. 59:389–97. doi: 10.1016/j.atmosenv.2012.06.010.
  • Fujitani, Y., K. Saitoh, Y. Kondo, A. Fushimi, A. Takami, K. Tanabe, and S. Kobayashi. 2016. Characterization of structure of single particles from various automobile engines under steady-state conditions. Aerosol Sci. Technol. 50 (10):1055–67. doi: 10.1080/02786826.2016.1218438.
  • Gagné, S., M. Couillard, Z. Gajdosechova, A. Momenimovahed, G. Smallwood, Z. Mester, K. Thomson, P. Lobo, and J. C. Corbin. 2021. Ash-decorated and ash-painted soot from residual and distillate-fuel combustion in four marine engines and one aviation engine. Environ. Sci. Technol. 55:6584–6593.
  • Graves, B., J. S. Olfert, B. Patychuk, R. Dastanpour, and S. Rogak. 2015. Characterization of particulate matter morphology and volatility from a compression-ignition natural-gas direct-injection engine. Aerosol Sci. Technol. 49 (8):589–98. doi: 10.1080/02786826.2015.1050482.
  • Hu, S., S. Zhang, S. Sardar, S. Chen, I. Dzhema, S. M. Huang, D. Quiros, H. Sun, C. Laroo, L. J. Sanchez, et al. 2014. Evaluation of gravimetric method to measure light-duty vehicle particulate matter emissions at levels below one milligram per mile (1 mg/mile). SAE Technical Paper No. 2014-01-1571.
  • Jiang, Y., J. Yang, S. Gagné, T. W. Chan, K. Thomson, E. Fofie, R. A. Cary, D. Rutherford, B. Comer, J. Swanson, et al. 2018. Sources of variance in BC mass measurements from a small marine engine: Influence of the instruments, fuels and loads. Atmos. Environ. 182:128–37. doi: 10.1016/j.atmosenv.2018.03.008.
  • Kamboures, M. A., S. Hu, Y. Yu, J. Sandoval, P. Rieger, S. M. Huang, S. Zhang, I. Dzhema, D. Huo, A. Ayala, et al. 2013. Black carbon emissions in gasoline vehicle exhaust: A measurement and instrument comparison. J. Air Waste Manag. Assoc. 63 (8):886–901. doi: 10.1080/10962247.2013.787130.
  • Karanasiou, A., M. C. Minguillón, M. Viana, A. Alastuey, J. P. Putaud, W. Maenhaut, P. Panteliadis, G. Močnik, O. Favez, and T. A. J. Kuhlbusch. 2015. Thermal-optical analysis for the measurement of elemental carbon (EC) and organic carbon (OC) in ambient air a literature review. Atmos. Meas. Tech. Discuss 8:9649–712.
  • Kennedy, I. M. 2007. The health effects of combustion-generated aerosols. Proc Combust Instit 31: 2757–70.
  • Khalizov, A. F., H. Xue, L. Wang, J. Zheng, and R. Zhang. 2009. Enhanced light absorption and scattering by carbon soot aerosol internally mixed with sulfuric acid. J. Phys. Chem. A. 113 (6):1066–74. doi: 10.1021/jp807531n.
  • Kirchen, P., P. Obrecht, K. Boulouchos, and A. Bertola. 2010. Exhaust-stream and in-cylinder measurements and analysis of the soot emissions from a common rail diesel engine using two fuels. J. Eng. Gas Turb. Power 132 (11):112804. doi: 10.1115/1.4001083.
  • Kittelson, D. B., and J. H. Johnson. 1991. Variability in Particle Emission Measurements in the Heavy-Duty Transient Test, SAE Technical Paper No. 910738.
  • Kuhlbusch, T., A. Borowiak, A. Gelenscer, J. Genberg, D. Gladtke, W. Maenhaut, C. Pio, O. Popoviecheva, J.-P. Putaud, P. Quincey, et al. 2009. Measurement of elemental and organic carbon in Europe. JRC Scientific and Technical Reports: EUR 23992 EN – 2009.
  • Lesins, G., P. Chylek, and U. Lohmann. 2002. A study of internal and external mixing scenarios and its effect on aerosol optical properties and direct radiative forcing. J. Geophys. Res. 107 (D10):AAC 5-1– 5-12. doi: 10.1029/2001JD000973.
  • Lobo, P., L. Durdina, B. T. Brem, A. P. Crayford, M. P. Johnson, G. J. Smallwood, F. Siegerist, P. I. Williams, E. A. Black, A. Llamedo, et al. 2020. Comparison of standardized sampling and measurement reference systems for aircraft engine non-volatile particulate matter emissions. J. Aerosol Sci. 145 (105557):105557. doi: 10.1016/j.jaerosci.2020.105557.
  • Shrivastava, M. K., E. M. Lipsky, C. O. Stanier, and A. L. Robinson. 2006. Modeling semivolatile organic aerosol mass emissions from combustion systems. Environ. Sci. Technol. 40 (8):2671–7. doi: 10.1021/es0522231.
  • Maricq, M. M. 2007. Chemical characterization of particulate emissions from diesel engines: A review. J. Aerosol Sci. 38:1079–118.
  • Michelsen, H. A., C. Schulz, G. J. Smallwood, and S. Will. 2015. Laser-induced incandescence: Particulate diagnostics for combustion, atmospheric, and industrial applications. Prog. Energy Combust. Sci. 51:2–48. doi: 10.1016/j.pecs.2015.07.001.
  • Mohr, M.,. A. M. Forss, and U. Lehmann. 2006. Particle emissions from diesel passenger cars equipped with a particle trap in comparison to other technologies. Environ. Sci. Technol. 40 (7):2375–83. doi: 10.1021/es051440z.
  • Momenimovahed, A., S. Gagné, Z. Gajdosechova, J. C. Corbin, G. J. Smallwood, Z. Mester, B. Behrends, V. Wichmann, and K. A. Thomson. 2021a. Effective density and metals content of particle emissions generated by a diesel engine operating under different marine fuels. J. Aerosol Sci. 151 (105651):105651. doi: 10.1016/j.jaerosci.2020.105651.
  • Momenimovahed, A., F. Liu, K. A. Thomson, G. J. Smallwood, and H. Guo. 2021b. Effect of fuel composition on properties of particles emitted from a diesel–natural gas dual fuel engine. Int. J. Engine Res. 22 (1):77–87. doi: 10.1177/1468087419846018.
  • Oeder, S., T. Kanashova, O. Sippula, S. C. Sapcariu, T. Streibel, J. M. Arteaga-Salas, J. Passig, M. Dilger, H.-R. Paur, C. Schlager, et al. 2015. Particulate matter from both heavy fuel oil and diesel fuel shipping emissions show strong biological effects on human lung cells at realistic and comparable in vitro exposure conditions. PLoS One. 10 (6):e0126536. doi: 10.1371/journal.pone.0126536.
  • Olfert, J., and S. Rogak. 2019. Universal relations between soot effective density and primary particle size for common combustion sources. Aerosol Sci. Technol. 53 (5):485–92. doi: 10.1080/02786826.2019.1577949.
  • Petzold, A., J. A. Ogren, M. Fiebig, P. Laj, S. Li, U. Baltensperger, T. Holzer-Popp, S. Kinne, G. Pappalardo, N. Sugimoto, et al. 2013. Recommendations for the interpretation reporting of" black carbon. Atmos. Chem. Phys. 13 (16):8365–79. doi: 10.5194/acp-13-8365-2013.
  • Pöschl, U. 2005. Atmospheric aerosols: composition, transformation, climate and health effects. Angew. Chem. Int. Ed. Engl. 44 (46):7520–40. doi: 10.1002/anie.200501122.
  • SAE AIR6241A. 2020. Procedure for the continuous sampling and measurement of non-volatile particle emissions from aircraft turbine engines. Warrendale, PA: SAE International.
  • Sapcariu, S. C., T. Kanashova, M. Dilger, S. Diabaté, S. Oeder, J. Passig, C. Radischat, J. Buters, O. Sippula, T. Streibel, et al. 2016. Metabolic profiling as well as stable isotope assisted metabolic and proteomic analysis of RAW 264.7 macrophages exposed to ship engine aerosol emissions: different effects of heavy fuel oil and refined diesel fuel. PloS One. 11 (6):e0157964. doi: 10.1371/journal.pone.0157964.
  • Scarnato, B. V., S. Vahidinia, D. T. Richard, and T. W. Kirchstetter. 2013. Effects of internal mixing and aggregate morphology on optical properties of black carbon using a discrete dipole approximation model. Atmos. Chem. Phys. 13 (10):5089–101. doi: 10.5194/acp-13-5089-2013.
  • Sippula, O., B. Stengel, M. Sklorz, T. Streibel, R. Rabe, J. Orasche, J. Lintelmann, B. Michalke, G. Abbaszade, C. Radischat, et al. 2014. Particle emissions from a marine engine: chemical composition and aromatic emission profiles under various operating conditions. Environ. Sci. Technol. 48 (19):11721–9. doi: 10.1021/es502484z.
  • Slowik, J. G., E. S. Cross, J. H. Han, P. Davidovits, T. B. Onasch, J. T. Jayne, L. R. Williams, M. R. Canagaratna, D. R. Worsnop, R. K. Chakrabarty, et al. 2007. An inter-comparison of instruments measuring black carbon content of soot particles. Aerosol Sci. Technol. 41 (3):295–314. doi: 10.1080/02786820701197078.
  • Streibel, T., J. Schnelle-Kreis, H. Czech, H. Harndorf, G. Jakobi, J. Jokiniemi, E. Karg, J. Lintelmann, G. Matuschek, B. Michalke, et al. 2017. Aerosol emissions of a ship diesel engine operated with diesel fuel or heavy fuel oil. Environ. Sci. Pollut. Res. Int. 24 (12):10976–91. doi: 10.1007/s11356-016-6724-z.
  • Subramanian, R., A. Y. Khlystov, and A. L. Robinson. 2006. Effect of peak inert-mode temperature on elemental carbon measured using thermal-optical analysis. Aerosol Sci. Technol. 40 (10):763–80. doi: 10.1080/02786820600714403.
  • Sydbom, A., A. Blomberg, S. Parnia, N. Stenfors, T. Sandström, and S. E. Dahlen. 2001. Health effects of diesel exhaust emissions. Eur. Respirat. J. 17 (4):733–46. doi: 10.1183/09031936.01.17407330.
  • Tóth, Á., A. Hoffer, M. Pósfai, T. Ajtai, Z. Kónya, M. Blazsó, Z. Czégény, G. Kiss, Z. Bozóki, and A. Gelencsér. 2018. Chemical characterization of laboratory-generated tar ball particles. Atmos. Chem. Phys. 18 (14):10407–18. doi: 10.5194/acp-18-10407-2018.
  • Viana, M., P. Hammingh, A. Colette, X. Querol, B. Degraeuwe, I. de Vlieger, and J. Van Aardenne. 2014. Impact of maritime transport emissions on coastal air quality in Europe. Atmos. Environ. 90:96–105. doi: 10.1016/j.atmosenv.2014.03.046.
  • Viana, M., V. Rizza, A. Tobías, E. Carr, J. Corbett, M. Sofiev, A. Karanasiou, G. Buonanno, and N. Fann. 2020. Estimated health impacts from maritime transport in the Mediterranean region and benefits from the use of cleaner fuels. Environ. Int. 138 (105670):105670. doi: 10.1016/j.envint.2020.105670.
  • Weingartner, E., H. Saathoff, M. Schnaiter, N. Streit, B. Bitnar, and U. Baltensperger. 2003. Absorption of light by soot particles: determination of the absorption coefficient by means of aethalometers. J. Aerosol Sci. 34 (10):1445–63. doi: 10.1016/S0021-8502(03)00359-8.
  • Wu, D., Q. Li, X. Ding, J. Sun, D. Li, H. Fu, M. Teich, X. Ye, and J. Chen. 2018. Primary particulate matter emitted from heavy fuel and diesel oil combustion in a typical container ship: characteristics and toxicity. Environ. Sci. Technol. 52 (21):12943–51. doi: 10.1021/acs.est.8b04471.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.