1,985
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Spray scrubber for nanoparticle removal from incineration fumes from the incineration of waste containing nanomaterials: Theoretical and experimental investigations

ORCID Icon, , , , &
Pages 75-91 | Received 25 Feb 2021, Accepted 09 Aug 2021, Published online: 07 Oct 2021

References

  • Achiles, A., and V. Guerra. 2020. Performance of a cyclone scrubber in removal of fine particulate matter. CI&CEQ. 26 (1):31–40. doi:10.2298/CICEQ181220022A.
  • Aguilar, G., B. Majaron, W. Verkruysse, Y. Zhou, J. S. Nelson, and E. Lavernia. 2001. Theoretical and experimental analysis of droplet diameter, temperature, and evaporation rate evolution in cryogenic sprays. Int. J. Heat Mass Transf. 44 (17):3201–11. doi:10.1016/S0017-9310(00)00363-X.
  • Ahmed, S., H. Mohsin, K. Qureshi, A. Shah, W. Siddique, K. Waheed, N. Irfan, M. Ahmad, and A. Farooq. 2018. Investigation of dust particle removal efficiency of self-priming venturi scrubber using computational fluid dynamics. Nucl. Eng. Technol. 50 (5):665–72. doi:10.1016/j.net.2018.01.016.
  • Ali, M., C. Yan, Z. Sun, H. Gu, and K. Mehboob. 2013. Dust particle removal efficiency of a venturi scrubber. Ann. Nucl. Energy. 54:178–83. doi:10.1016/j.anucene.2012.11.005.
  • Allied Market Research. 2016. Europe Nanomaterials Market to Reach $9,078 Million, Globally, By 2022. Accessed December 14, 2020. //www.alliedmarketresearch.com/press-release/europe-nanomaterials-market.html.
  • Attaullah, N. A., M. B. K. Niazi, M. Ahsan, and M. Ali. 2020. Computational fluid dynamics simulation for the prediction of the venturi scrubber performance using finite volume method. IJCSM. 11 (4):338–46. doi:10.1504/IJCSM.2020.107601.
  • Bal, M., H. Siddiqi, S. Mukherjee, and B. C. Meikap. 2019. Design of self priming venturi scrubber for the simultaneous abatement of HCl gas and particulate matter from the flue gas. Chem. Eng. Res. Des. 150:311–9. doi:10.1016/j.cherd.2019.08.005.
  • Bandyopadhyay, A., and M. N. Biswas. 2007. Fly ash scrubbing in a novel dual flow scrubber. Waste Manag. 27 (12):1845–59. doi:10.1016/j.wasman.2006.10.013.
  • Baran, P., and P. Quicker. 2017. Fate and behavior of nanoparticles in waste incineration. Österr. Wasser- Und Abfallw. 69 (1–2):51–65. doi:10.1007/s00506-016-0362-z.
  • Baumann, W., N. Teuscher, M. Hauser, J. Gehrmann, H. R. Paur, and D. Stapf. 2017. Behaviour of engineered nanoparticles in a lab-scale flame and combustion chamber. Energy Procedia. 120:705–12. doi:10.1016/j.egypro.2017.07.194.
  • Bhave, A. G., D. K. Vyas, and J. B. Patel. 2008. A wet packed bed scrubber-based producer gas cooling-cleaning system. Renew. Energy 33 (7):1716–20. doi:10.1016/j.renene.2007.08.014.
  • Bianchini, A., F. Cento, L. Golfera, M. Pellegrini, and C. Saccani. 2016. Performance analysis of different scrubber systems for removal of particulate emissions from a small size biomass boiler. Biomass Bioenerg. 92:31–9. doi:10.1016/j.biombioe.2016.06.005.
  • Bianchini, A., M. Pellegrini, J. Rossi, and C. Saccani. 2018. Theoretical model and preliminary design of an innovative wet scrubber for the separation of fine particulate matter produced by biomass combustion in small size boilers. Biomass Bioenerg. 116:60–71. doi:10.1016/j.biombioe.2018.05.011.
  • Biswas, S., B. Rajmohan, and B. C. Meikap. 2008. Hydrodynamics characterization of a counter-current spray column for particulate scrubbing from flue gases. Asia-Pacific J. Chem. Eng. 3 (5):544–9. doi:10.1002/apj.177.
  • Börner, R., M. Meiller, J. Oischinger, and R. Daschner. 2016. Untersuchung möglicher Umweltauswirkungen bei der Entsorgung nanomaterialhaltiger Abfälle in Abfallbe-handlungsanlagen.
  • Buha, J., N. Mueller, B. Nowack, A. Ulrich, S. Losert, and J. Wang. 2014. Physical and chemical characterization of fly ashes from Swiss waste incineration plants and determination of the ash fraction in the nanometer range. Environ. Sci. Technol. 48 (9):4765–73. doi:10.1021/es4047582.
  • Buonanno, G., G. Ficco, and L. Stabile. 2009. Size distribution and number concentration of particles at the stack of a municipal waste incinerator. Waste Manag. 29 (2):749–55. doi:10.1016/j.wasman.2008.06.029.
  • Buonanno, G., and L. Morawska. 2015. Ultrafine particle emission of waste incinerators and comparison to the exposure of urban citizens. Waste Manag. 37:75–81. doi:10.1016/j.wasman.2014.03.008.
  • Calderón-Garcidueñas, L., A. González-Maciel, P. S. Mukherjee, R. Reynoso-Robles, B. Pérez-Guillé, C. Gayosso-Chávez, R. Torres-Jardón, J. V. Cross, I. A. M. Ahmed, V. V. Karloukovski, et al. 2019a. Combustion- and friction-derived magnetic air pollution nanoparticles in human hearts. Environ. Res. 176:108567. doi:10.1016/j.envres.2019.108567.
  • Calderón-Garcidueñas, L., R. Reynoso-Robles, and A. González-Maciel. 2019b. Combustion and friction-derived nanoparticles and industrial-sourced nanoparticles: The culprit of Alzheimer and Parkinson’s diseases. Environ. Res. 176. doi:10.1016/j.envres.2019.108574.
  • Calvert, S., D. Lundgren, and D. S. Mehta. 1972. Venturi scrubber performance. J. Air Pollut. Control Assoc. 22 (7):529–32. doi:10.1080/00022470.1972.10469674.
  • Campos, A., and I. López. 2019. Current status and perspectives in nanowaste management. In Handbook of environmental materials management, ed. C. M. Hussain, 2287–314. Springer International Publishing.
  • Carotenuto, C., F. Di Natale, and A. Lancia. 2010. Wet electrostatic scrubbers for the abatement of submicronic particulate. Chem. Eng. J. 165 (1):35–45. doi:10.1016/j.cej.2010.08.049.
  • Centner, P., H. Büttner, and F. Ebert. 1989. Investigation of a wet dust scrubber with a pneumatic nozzle: Dust collection based on turbulent diffusion. Chem. Eng. Technol. 12 (1):439–44. doi:10.1002/ceat.270120163.
  • Cernuschi, S., G. Lonati, S. Ozgen, R. Tardivo, and S. Signorini. 2019. Ultrafine and nanoparticles emissions from clinical waste incineration: characterization and chemical speciation. In 16th International Conference on Environmental Science and Technology. Rhodes, Greece, 4.
  • Cernuschi, S., M. Giugliano, S. Ozgen, and S. Consonn. 2012. Number concentration and chemical composition of ultrafine and nanoparticles from WTE (waste to energy) plants. Sci. Total Environ. 420:319–326. doi:10.1016/j.scitotenv.2012.01.024.
  • Chen, Z., C. You, H. Liu, and H. Wang. 2018. The synergetic particles collection in three different wet flue gas desulfurization towers: A pilot-scale experimental investigation. Fuel Process. Technol. 179:344–50. doi:10.1016/j.fuproc.2018.07.025.
  • Cho, K. S., Y. Y. Lee, S. Jang, J. Nae, Yun, J. Kwon, H. J. Park, and Y. Seo. 2020. Removal of particulate matter from pork belly grilling gas using an orifice wet scrubber. J. Environ. Sci. Health. A Tox. Hazard. Subst. Environ. Eng. 55 (9):1125–30. doi:10.1080/10934529.2020.1773712.
  • Commodo, M., G. De Falco, R. Larciprete, A. D’Anna, and P. Minutolo. 2016. On the hydrophilic/hydrophobic character of carbonaceous nanoparticles formed in laminar premixed flames. Exp. Therm. Fluid Sci. 73:56–63. doi:10.1016/j.expthermflusci.2015.09.005.
  • Cui, H., N. Li, J. Peng, J. Cheng, N. Zhang, and Z. Wu. 2017. Modeling the particle scavenging and thermal efficiencies of a heat absorbing scrubber. Build. Environ. 111:218–27. doi:10.1016/j.buildenv.2016.11.006.
  • Danzomo, B. A., M. J. E. Salami, S. Jabirin, M. R. Khan, and I. M. Nor. 2012. Performance evaluation of wet scrubber system for industrial air pollution control.
  • DeCarlo, P. F., J. G. Slowik, D. R. Worsnop, P. Davidovits, and J. L. Jimenez. 2004. Particle morphology and density characterization by combined mobility and aerodynamic diameter measurements. Part 1: Theory. Aerosol Sci. Technol. 38 (12):1185–205. doi:10.1080/027868290903907.
  • Derrough, S., G. Raffin, D. Locatelli, P. Nobile, and C. Durand. 2013. Behaviour of nanoparticles during high temperature treatment (Incineration type). J. Phys. Conf. Ser. 429 (1): 012047.
  • Di Natale, F., C. Carotenuto, L. D’Addio, A. Jaworek, A. Krupa, M. Szudyga, and A. Lancia. 2015. Capture of fine and ultrafine particles in a wet electrostatic scrubber. J. Environ. Chem. Eng. 3 (1):349–56. doi:10.1016/j.jece.2014.11.007.
  • EC. 2010. Commission recommendations. Nurs. Stand. 24 (26):6. doi:10.7748/ns.24.26.6.s4.
  • Faisal, N., and K. Kumar. 2017. Polymer and metal nanocomposites in biomedical applications. Biointerface Research in Applied Chemistry 7:2286–2294.
  • Faunce, T. 2017. POLICY AREA: 2030 Agenda Nanowaste: Need for disposal and recycling standards.
  • Fuchs, N. 1964. The mechanics of aerosols, Rev. and enl. ed. Pergamon Press, Oxford.
  • Gemci, T., and F. Ebert. 1992. Prediction of the particle capture efficiency based on the combined mechanisms (turbulent diffusion, inertial impaction, interception, and gravitation) by a 3-D simulation of a wet scrubber. J. Aerosol Sci. 23 (Suppl. 1):769–772. doi:10.1016/0021-8502(92)90525-Z.
  • Grand View Research. 2020. Global nanomaterials market size report, 2020–2027. Accessed November 23, 2020. //www.grandviewresearch.com/industry-analysis/nanotechnology-and-nanomaterials-market.
  • Ha, T. H., O. Nishida, H. Fujita, and H. Wataru. 2010. Enhancement of diesel particulate matter collection in an electrostatic water-spraying scrubber. J. Mar. Sci. Technol. 15 (3):271–279. doi:10.1007/s00773-010-0086-x.
  • Heinzerling, A., J. Hsu, and F. Yip. 2016. Respiratory health effects of ultrafine particles in children: A literature review. Water. Air. Soil Pollut. 227(1). doi:10.1007/s11270-015-2726-6.
  • Hu, S., Y. Gao, G. Feng, F. Hu, C. Liu, and J. Li. 2021. Experimental study of the dust-removal performance of a wet scrubber. Int. J. Coal Sci. Technol. 8:228–239. doi:10.1007/s40789-021-00410-y.
  • Huang, C.-H., C.-J. Tsai, and Y.-M. Wang. 2007. Control efficiency of submicron particles by an efficient venturi scrubber system. J. Environ. Eng. 133 (4):454–461. doi:10.1061/(ASCE)0733-9372(2007)133:4(454).
  • Huang, S. H., J. L. Kang, D. S. H. Wong, S. S. Jang, and C. A. Lin. 2020. Particle-Scavenging prediction in sieve plate scrubber via dimension reduction in computational fluid dynamics. Chem. Eng. Res. Des. 160:540–550. doi:10.1016/j.cherd.2020.06.024.
  • Huang, Y., C. Zheng, Q. Li, J. Zhang, Y. Guo, Y. Zhang, and X. Gao. 2020. Numerical simulation of the simultaneous removal of particulate matter in a wet flue gas desulfurization system. Environ. Sci. Pollut. Res. Int. 27 (2):1598–1607. doi:10.1007/s11356-019-06773-9.
  • Johnstone, H. F., and M. N. Roberts. 1949. Deposition of aerosol particles from moving gas streams. Ind. Eng. Chem. 41 (11):2417–2423. doi:10.1021/ie50479a019.
  • Jung, C. H., and K. W. Lee. 1998. Filtration of fine particles by multiple liquid droplet and gas bubble systems. Aerosol Sci. Technol. 29 (5):389–401. doi:10.1080/02786829808965578.
  • Kabir, E., V. Kumar, K. H. Kim, A. C. K. Yip, and J. R. Sohn. 2018. Environmental impacts of nanomaterials. J. Environ. Manage. 225:261–271. doi:10.1016/j.jenvman.2018.07.087.
  • Kang, G. S., P. A. Gillespie, A. Gunnison, A. L. Moreira, K.-M. Tchou-Wong, and L.-C. Chen. 2011. Long-term inhalation exposure to nickel nanoparticles exacerbated atherosclerosis in a susceptible mouse model. Environ. Health Perspect. 119 (2):176–181. doi:10.1289/ehp.1002508.
  • Keshavarz, P., Y. Bozorgi, J. Fathikalajahi, and M. Taheri. 2008. Prediction of the spray scrubbers’ performance in the gaseous and particulate scrubbing processes. Chem. Eng. J. 140 (1–3):22–31. doi:10.1016/j.cej.2007.08.034.
  • Khan, I., K. Saeed, and I. Khan. 2019. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 12(7):908–931. doi:10.1016/j.arabjc.2017.05.011.
  • Kim, H. T., C. H. Jung, S. N. Oh, and K. W. Lee. 2001. Particle removal efficiency of gravitational wet scrubber considering diffusion, interception, and impaction. Environ. Eng. Sci. 18 (2):125–136. doi:10.1089/10928750151132357.
  • Kim, J. S., and J. W. Park. 2020. A method of estimating aerosol particle removal rates using one-dimensional two-fluid equations for venturi scrubbers in filtered containment venting. Ann. Nucl. Energy. 145:107543. doi:10.1016/j.anucene.2020.107543.
  • Krames, J., and H. Büttner. 1994. The cyclone scrubber – a high efficiency wet separator. Chem. Eng. Technol. 17 (2):73–80. doi:10.1002/ceat.270170202.
  • Lai, K.-Y., N. Dayan, M. Kerker, K.-Y. Lai, N. Dayan, and M. Kerker. 1978. Scavenging of aerosol particles by a falling water drop. J. Atmosph. Sci. 35 (4):674–82. doi:10.1175/1520-0469(1978)035 < 0674:SOAPBA>2.0.CO;2.
  • Lang, I.-M., M. Hauser, W. Baumann, H. Mätzing, H.-R. Paur, and H. Seifert. 2015. Untersuchungen zur Freisetzung von synthetischen Nanopartikeln bei der Abfallverbrennung, vivis.de.
  • Lee, B.-K., B. R. Mohan, S.-H. Byeon, K.-S. Lim, and E.-P. Hong. 2013. Evaluating the performance of a turbulent wet scrubber for scrubbing particulate matter. J. Air Waste Manag. Assoc. 63 (5):499–506. doi:10.1080/10962247.2012.738626.
  • Lee, J. 2008. Black carbon and elemental carbon concentrations of spark-generated carbon particles. ETH-Conference on combustion generated nanoparticles, Zurich, Switzerland, vol. 25 (2013001650004), 1–37.
  • Licht, W. 1988. Air pollution control engineering: Basic calculations for particulate collection. Cambridge: CRC Press.
  • Lim, K. S., S. H. Lee, and H. S. Park. 2006. Prediction for particle removal efficiency of a reverse jet scrubber. J. Aerosol Sci. 37 (12):1826–1839. doi:10.1016/j.jaerosci.2006.06.010.
  • Maricq, M. M., N. Xu, and R. E. Chase. 2007. Measuring particulate mass emissions with the electrical low pressure impactor. Aeros. Sci. Technol. 40 (1):68–79. doi:10.1080/02786820500466591.
  • Massari, A., M. Beggio, S. Hreglich, R. Marin, and S. Zuin. 2014. Behavior of TiO2 nanoparticles during incineration of solid paint waste: A lab-scale test. Waste Manag. 34 (10):1897–1907. doi:10.1016/j.wasman.2014.05.015.
  • Mazari, S. A., E. Ali, R. Abro, F. S. A. Khan, I. Ahmed, M. Ahmed, S. Nizamuddin, T. H. Siddiqui, N. Hossain, N. M. Mubarak, et al. 2021. Nanomaterials: Applications, waste-handling, environmental toxicities, and future challenges – A review. J. Environ. Chem. Eng. 9 (2):105028. doi:10.1016/j.jece.2021.105028.
  • Mi, T., and X. M. Yu. 2012. Dust removal and desulphurization in a novel venturi scrubber. Chem. Eng. Process. Process Intensif. 62:159–167. doi:10.1016/j.cep.2012.07.010.
  • Mishra, A. K., R. Arya, and D. Panchal. 2020. Environmental nanotechnology: Global framework and integrative strategies of nanowaste management. Handbook Environ Mat Manag. 1–31. doi:10.1007/978-3-319-58538-3_188-1
  • Mohan, B. R., S. Biswas, and B. C. Meikap. 2008. Performance characteristics of the particulates scrubbing in a counter-current spray-column. Sep. Purif. Technol. 61 (1):96–102. doi:10.1016/j.seppur.2007.09.018.
  • Mueller, N., B. Nowack, J. Wang, A. Ulrich, and J. Buha. 2012. Nanomaterials in waste incineration and landfills. Intern. Empa-report. http://www.empa.ch/plugin/template/empa/*/124595.
  • Mueller, N., J. Buha, J. Wang, A. Ulrich, and B. Nowack. 2013. Modeling the flows of engineered nanomaterials during waste handling. pubs.rsc.org.
  • Muller, N., B. Benadda, and M. Otterbein. 2001. Mass transfer in a “droplets column” in presence of solid particles. Chem. Eng. Process. 40 (2):167–174. doi:10.1016/S0255-2701(00)00136-7.
  • Nakao, S., P. Tang, X. Tang, C. H. Clark, L. Qi, E. Seo, A. Asa-Awuku, and D. Cocker. 2013. Density and elemental ratios of secondary organic aerosol: Application of a density prediction method. Atmos. Environ. 68:273–277. doi:10.1016/j.atmosenv.2012.11.006.
  • Neuwahl, F., G. Cusano, J. G. Benavides, S. Holbrook, and R. Serge. 2019. Best available techniques (BAT) reference document for waste treatment industries. Industrial Emissions Directive 2010/75/EU (Integrated Pollution Prevention and Control) Frederik.
  • Nurkiewicz, T. R., D. W. Porter, A. F. Hubbs, J. L. Cumpston, B. T. Chen, D. G. Frazer, and V. Castranova. 2008. Nanoparticle inhalation augments particle-dependent systemic microvascular dysfunction. Part. Fibre Toxicol. 5 (1):1–12. doi:10.1186/1743-8977-5-1.
  • Oberdörster, G., E. Oberdörster, and J. Oberdörster. 2005. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 113(7):823–839. doi:10.1289/ehp.7339
  • Oischinger, J., M. Meiller, R. Daschner, A. Hornung, and R. Warnecke. 2019. Fate of nano titanium dioxide during combustion of engineered nanomaterial-containing waste in a municipal solid waste incineration plant. Waste Manag. Res. 37 (10):1033–1042. doi:10.1177/0734242X19862603.
  • Ounoughene, G., C. Chivas-Joly, C. Longuet, O. Le Bihan, J. M. Lopez-Cuesta, and L. Le Coq. 2019. Evaluation of nanosilica emission in polydimethylsiloxane composite during incineration. J. Hazard. Mater. 371:415–422. doi:10.1016/j.jhazmat.2019.03.026.
  • Ounoughene, G., O. Le Bihan, C. Chivas-Joly, C. Motzkus, C. Longuet, B. Debray, A. Joubert, L. Le Coq, and J. M. Lopez-Cuesta. 2015. Behavior and fate of halloysite nanotubes (HNTs) when incinerating pa6/HNTs nanocomposite. Environ. Sci. Technol. 49 (9):5450–5457. doi:10.1021/es505674j.
  • Park, K., F. Cao, D. B. Kittelson, and P. H. McMurry. 2003. Relationship between particle mass and mobility for diesel exhaust particles. Environ. Sci. Technol. 37 (3):577–583. doi:10.1021/es025960v.
  • Part, F., N. Berge, P. Baran, A. Stringfellow, W. Sun, S. Bartelt-Hunt, D. Mitrano, L. Li, P. Hennebert, P. Quicker, et al. 2018. A review of the fate of engineered nanomaterials in municipal solid waste streams. Waste Manag. 75:427–449. doi:10.1016/j.wasman.2018.02.012
  • Perry, R. H., D. W. Green, and J. O. Maloney. 1997. Perry’s chemical engineers’ handbook, 7th ed. Blacklick, OH: McGraw-Hill.
  • Pilat, M. J., and A. Prem. 1976. Calculated particle collection efficiencies of single droplets including inertial impaction, Brownian diffusion, diffusiophoresis and thermophoresis. Atmos. Environ 10 (1):13–19. doi:10.1016/0004-6981(76)90253-5.
  • Pilat, M. J., S. A. Jaasund, and L. E. Sparks. 1974. Collection of aerosol particles by electrostatic droplet spray scrubbers. Environ. Sci. Technol. 8 (4):360–362. doi:10.1021/es60089a006.
  • Pourchez, J., C. Chivas-Joly, C. Longuet, L. Leclerc, G. Sarry, and J. M. Lopez-Cuesta. 2018. End-of-life incineration of nanocomposites: new insights into nanofiller partitioning into by-products and biological outcomes of airborne emission and residual ash. Environ. Sci: Nano. 5 (8):1951–1964. doi:10.1039/C8EN00420J.
  • Pranesha, T. S., and A. K. Kamra. 1996. Scavenging of aerosol particles by large water drops 1. Neutral case. J. Geophys. Res. 101 (D18):23373–23380. doi:10.1029/96JD01311.
  • Rafidi, N., F. Brogaard, L. Chen, R. Håkansson, and A. Tabikh. 2018. CFD and experimental studies on capture of fine particles by liquid droplets in open spray towers. Sustain. Environ. Res. 28 (6):382–388. doi:10.1016/j.serj.2018.08.003.
  • Raj Mohan, B., R. K. Jain, and B. C. Meikap. 2008. Comprehensive analysis for prediction of dust removal efficiency using twin-fluid atomization in a spray scrubber. Sep. Purif. Technol. 63 (2):269–277. doi:10.1016/j.seppur.2008.05.006.
  • Ristimäki, J., A. Virtanen, M. Marjamäki, A. Rostedt, and J. Keskinen. 2002. On-line measurement of size distribution and effective density of submicron aerosol particles. J. Aerosol Sci. 33 (11):1541–1557. doi:10.1016/S0021-8502(02)00106-4.
  • Ru, Y., L. Zhao, L. J. S. Hadlocon, H. Zhu, and S. K. Ramdon. 2017. Laboratory evaluation of electrostatic spray wet scrubber to control particulate matter emissions from poultry facilities. Environ. Technol. 38 (1):23–33. doi:10.1080/09593330.2016.1184319.
  • Schifftner, K. C. 2013. Air pollution control equipment selection guide. Boca Raton, FL: CRC Press.
  • Schnelle, K. B., and C. A. Brown. 2002. Air pollution control technology handbook. Boca Raton, FL: CRC Press.
  • Schraufnagel, D. E. 2020. The health effects of ultrafine particles. Exp. Mol. Med. 52 (3):311–317. doi:10.1038/s12276-020-0403-3.
  • Seinfeld, J. H., and S. N. Pandis. 2006. Atmospheric chemistry and physics: From air pollution to climate change. New York: J. Wiley.
  • Sidiropoulou, E., K. Feidantsis, S. Kalogiannis, G. P. Gallios, G. Kastrinaki, E. Papaioannou, M. Václavíková, and M. Kaloyianni. 2018. Insights into the toxicity of iron oxides nanoparticles in land snails. Comp Biochem Physiol C Toxicol Pharmacol. 206–207:1–10. doi:10.1016/j.cbpc.2018.02.001.
  • Smita, S., S. K. Gupta, A. Bartonova, M. Dusinska, A. C. Gutleb, and Q. Rahman. 2012. Nanoparticles in the environment: Assessment using the causal diagram approach. Environ. Heal. A Glob. Access Sci. Source. 11:S13. doi:10.1186/1476-069X-11-S1-S13
  • Su, L., Y. Zhang, Q. Du, X. Dai, J. Gao, P. Dong, and H. Wang. 2020. An experimental study on the removal of submicron fly ash and black carbon in a gravitational wet scrubber with electrostatic enhancement. RSC Adv. 10 (10):5905–5912. doi:10.1039/C9RA10046F.
  • Teleanu, D., C. Chircov, A. Grumezescu, A. Volceanov, and R. Teleanu. 2018. Impact of nanoparticles on brain health: An up to date overview. J. Clin. Med 7 (12):490. doi:10.3390/jcm7120490.
  • Thomas, S., E. Al Mutairi, and S. De. 2013. Impact of nanomaterials on health and environment. Arab. J. Sci. Eng. 38 (3):457–477. doi:10.1007/s13369-012-0324-0.
  • Tomb, T. F., J. E. Emmerling, and R. H. Kellner. 1972. Collection of airborne coal dust by water spray in a horizontal duct. Am. Ind. Hyg. Assoc. J. 33 (11):715–721. doi:10.1080/0002889728506736.
  • Tsai, C.-J., C.-H. Lin, Y.-M. Wang, C.-H. Hunag, S.-N. Li, Z.-X. Wu, and F.-C. Wang. 2005. An efficient venturi scrubber system to remove submicron particles in exhaust gas. J. Air Waste Manag. Assoc. 55 (3):319–325. doi:10.1080/10473289.2005.10464622.
  • Vallero, D. A. 2019. Air pollution control technologies (Chapter 13, D.A. Vallero, ed.). Winston, NC: Elsevier, 377–428.
  • Vasudevan, T. V., A. J. Gokhale, and R. Mahalingam. 1985. Phoretic phenomena in tar vapor-particulate mixture separation from fuel gas streams. Can. J. Chem. Eng. 63 (6):903–910. doi:10.1002/cjce.5450630606.
  • Vejerano, E. P., A. L. Holder, and L. C. Marr. 2013. Emissions of polycyclic aromatic hydrocarbons, polychlorinated dibenzo-p-dioxins, and dibenzofurans from incineration of nanomaterials. Environ. Sci. Technol. 47 (9):4866–4874. doi:10.1021/es304895z.
  • Vejerano, E. P., E. C. Leon, A. L. Holder, and L. C. Marr. 2014. Characterization of particle emissions and fate of nanomaterials during incineration. Environ. Sci. Na 1 (2):133–143. doi:10.1039/C3EN00080J.
  • Vittori Antisari, L., S. Carbone, S. Bosi, A. Gatti, and G. Dinelli. 2018. Engineered nanoparticles effects in soil-plant system: Basil (Ocimum basilicum L.) study case. Appl. Soil Ecol 123:551–560. doi:10.1016/j.apsoil.2018.01.007.
  • Walser, T., L. K. Limbach, R. Brogioli, E. Erismann, L. Flamigni, B. Hattendorf, M. Juchli, F. Krumeich, C. Ludwig, K. Prikopsky, et al. 2012. Persistence of engineered nanoparticles in a municipal solid-waste incineration plant. Nat. Nanotechnol. 7 (8):520–524. doi:10.1038/nnano.2012.64.
  • Wang, P. K., and H. R. Pruppacher. 1980. The effect of an external electric field on the scavenging of aerosol particles by cloud drops and small rain drops. J. Colloid Interface Sci 75 (1):286–297. doi:10.1016/0021-9797(80)90370-7.
  • WHO. 2006. Regional Office for Europe & Joint WHO/Convention Task Force on the Health Aspects of Air Pollution. Health risks of particulate matter from long-range transboundary air pollution. Copenhagen: WHO Regional Office for Europe. https://apps.who.int/iris/handle/10665/107691.
  • Wu, Q., M. Gu, Y. Du, and H. Zeng. 2019. Synergistic removal of dust using the wet flue gas desulfurization systems. R. Soc. Open Sci. 6 (7):181696. doi:10.1098/rsos.181696.
  • Xiong, H., and W. Sun. 2017. Investigation of droplet atomization and evaporation in solution precursor plasma spray coating. Coatings 7 (11):207. doi:10.3390/coatings7110:207.
  • Yalamov, Y. I., L. Y. Vasiljeva, and E. R. Schukin. 1977. The study of various mechanisms of in-cloud scavenging of large, moderately large, and small aerosol particles. J. Colloid Interface Sci. 62 (3):503–508. doi:10.1016/0021-9797(77)90101-1.
  • Yang, L., J. Bao, J. Yan, J. Liu, S. Song, and F. Fan. 2010. Removal of fine particles in wet flue gas desulfurization system by heterogeneous condensation. Chem. Eng. J. 156 (1):25–32. doi:10.1016/j.cej.2009.09.026.
  • Yin, Z., X. Ye, S. Jiang, Y. Tao, Y. Shi, X. Yang, and J. Chen. 2015. Size-resolved effective density of urban aerosols in Shanghai. Atmos. Environ. 100:133–140. doi:10.1016/j.atmosenv.2014.10.055.
  • Zhang, B., C. Hu, J. He, C. Sui, and W. Chen. 2020. IOP Conference Series: Earth and Environmental Science Performance evaluation of a three-stage composite wet scrubber for removing particulate matter Performance evaluation of a three-stage composite wet scrubber for removing particulate matter. doi:10.1088/1755-1315/615/1/012117.
  • Zhang, H., Y. Dong, Y. Lai, H. Zhang, and X. Zhang. 2021. Synergistic removal of particles, SO2, and NO2 in desulfurized flue gas during condensation. Environ. Sci. Pollut. Res. Int. 28 (21):27273–27282. doi:10.1007/s11356-020-12192-y.
  • Zhao, H., and C. G. Zheng. 2008. Modeling of Gravitational Wet Scrubbers with Electrostatic Enhancement. Chem. Eng. Technol. 31 (12):1824–1837. doi:10.1002/ceat.200800360.
  • Zheng, Z., J. Zhu, S. Xia, and Q. Zeng. 2018. An efficient wet scrubber to remove micron and submicron particles from exhaust gas. J. Chem. Eng. Japan. 51 (10):839–847. doi:10.1252/jcej.17we167.
  • Zhou, J., S. Zhou, and Y. Zhu. 2017. Experiment and prediction studies of marine exhaust gas SO2 and particle removal based on NaOH solution with a U-type scrubber. Ind. Eng. Chem. Res. 56 (43):12376–12384. doi:10.1021/acs.iecr.7b02397.