2,025
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Cantilever-enhanced photoacoustic measurement of light-absorbing aerosols

, , , ORCID Icon, &
Pages 92-100 | Received 08 Jun 2021, Accepted 19 Oct 2021, Published online: 17 Nov 2021

References

  • Ajtai, T., Á. Filep, M. Schnaiter, C. Linke, M. Vragel, Z. Bozóki, G. Szabó, and T. Leisner. 2010. A novel multi − wavelength photoacoustic spectrometer for the measurement of the UV–Vis-NIR spectral absorption coefficient of atmospheric aerosols. J. Aerosol Sci. 41 (11):1020–9. doi:10.1016/j.jaerosci.2010.07.008.
  • Arnott, W. P., H. Moosmüller, C. F. Rogers, T. Jin, and R. Bruch. 1999. Photoacoustic spectrometer for measuring light absorption by aerosol: instrument description. Atmos. Environ. 33 (17):2845–52. doi:10.1016/S1352-2310(98)00361-6.
  • Bond, T. C., G. Habib, and R. W. Bergstrom. 2006. Limitations in the enhancement of visible light absorption due to mixing state. J. Geophys. Res. 111 (D20):D20211. doi:10.1029/2006JD007315.
  • Bond, T. C., S. J. Doherty, D. W. Fahey, P. M. Forster, T. Berntsen, B. J. DeAngelo, M. G. Flanner, S. Ghan, B. Kärcher, D. Koch, et al. 2013. Bounding the role of black carbon in the climate system: a scientific assessment. J. Geophys. Res. Atmos. 118 (11):5380–552. doi:10.1002/jgrd.50171.
  • Cao, Y., K. Liu, R. Wang, W. Chen, and X. Gao. 2021. Three-wavelength measurement of aerosol absorption using a multi-resonator coupled photoacoustic spectrometer. Opt. Express. 29 (2):2258–69. doi:10.1364/OE.412922.
  • Davies, N. W., M. I. Cotterell, C. Fox, K. Szpek, J. M. Haywood, and J. M. Langridge. 2018. On the accuracy of aerosol photoacoustic spectrometer calibrations using absorption by ozone. Atmos. Meas. Tech. 11 (4):2313–24. doi:10.5194/amt-11-2313-2018.
  • Drinovec, L., G. Močnik, P. Zotter, A. S. H. Prévôt, C. Ruckstuhl, E. Coz, M. Rupakheti, J. Sciare, T. Müller, A. Wiedensohler, et al. 2015. The "dual-spot" Aethalometer: an improved measurement of aerosol black carbon with real-time loading compensation. Atmos. Meas. Tech. 8 (5):1965–79. doi:10.5194/amt-8-1965-2015.
  • Fischer, D. A., and G. D. Smith. 2018. A portable, four-wavelength, single-cell photoacoustic spectrometer for ambient aerosol absorption. Aerosol Sci. Technol. 52 (4):393–406. doi:10.1080/02786826.2017.1413231.
  • Järvi, L., H. Hannuniemi, T. Hussein, H. Junninen, P. P. Aalto, R. Hillamo, T. Mäkelä, P. Keronen, E. Siivola, and T. Vesala. 2009. The urban measurement station SMEAR III: continuous monitoring of air pollution and surface–atmosphere interactions in Helsinki, Finland. Boreal Environ. Res. 14 (Supplement A):86–109.
  • Karhu, J., H. Philip, A. Baranov, R. Teissier, and T. Hieta. 2020. Sub-ppb detection of benzene using cantilever-enhanced photoacoustic spectroscopy with a long-wavelength infrared quantum cascade laser. Opt. Lett. 45 (21):5962–5. doi:10.1364/OL.405402.
  • Kauppinen, J., K. Wilcken, I. Kauppinen, and V. Koskinen. 2004. High sensitivity in gas analysis with photoacoustic detection. Microchem. J. 76 (1-2):151–9. doi:10.1016/j.microc.2003.11.007.
  • Koskinen, V., J. Fonsen, K. Roth, and J. Kauppinen. 2008. Progress in cantilever enhanced photoacoustic spectroscopy. Vib. Spectrosc. 48 (1):16–21. doi:10.1016/j.vibspec.2008.01.013.
  • Kuusela, T., and J. Kauppinen. 2007. Photoacoustic gas analysis using interferometric cantilever microphone. Appl. Spectrosc. Rev. 42 (5):443–74. doi:10.1080/00102200701421755.
  • Lack, D. A., E. R. Lovejoy, T. Baynard, A. Pettersson, and A. R. Ravishankara. 2006. Aerosol absorption measurement using photoacoustic spectroscopy: sensitivity, calibration, and uncertainty developments. Aerosol Sci. Technol. 40 (9):697–708. doi:10.1080/02786820600803917.
  • Lack, D. A., M. S. Richardson, D. Law, J. M. Langridge, C. D. Cappa, R. J. McLaughlin, and D. M. Murphy. 2012. Aircraft instrument for comprehensive characterization of aerosol optical properties, part 2: black and brown carbon absorption and absorption enhancement measured with photo acoustic spectroscopy. Aerosol Sci. Technol. 46 (5):555–68. doi:10.1080/02786826.2011.645955.
  • Luoma, K., J. V. Niemi, M. Aurela, P. L. Fung, A. Helin, T. Hussein, L. Kangas, A. Kousa, T. Rönkkö, H. Timonen, et al. 2021. Spatiotemporal variation and trends in equivalent black carbon in the Helsinki metropolitan area in Finland. Atmos. Chem. Phys. 21 (2):1173–89. doi:10.5194/acp-21-1173-2021.
  • Miklós, A., P. Hess, and Z. Bozóki. 2001. Application of acoustic resonators in photoacoustic trace gas analysis and metrology. Rev. Sci. Instrum. 72 (4):1937–55. doi:10.1063/1.1353198.
  • Nakayama, T., H. Suzuki, S. Kagamitani, Y. Ikeda, A. Uchiyama, and Y. Matsumi. 2015. Characterization of a three wavelength photoacoustic soot spectrometer (PASS-3) and a photoacoustic extinctiometer (PAX). J. Meteorol. Soc. Japan 93 (2):285–308. doi:10.2151/jmsj.2015-016.
  • Peltola, J., T. Hieta, and M. Vainio. 2015. Parts-per-trillion-level detection of nitrogen dioxide by cantilever-enhanced photo-acoustic spectroscopy. Opt. Lett. 40 (13):2933–6. doi:10.1364/OL.40.002933.
  • Petzold, A., and R. Niessner. 1995. Novel design of a resonant photoacoustic spectrophone for elemental carbon mass monitoring. Appl. Phys. Lett. 66 (10):1285–7. doi:10.1063/1.113271.
  • Qian, Y., T. J. Yasunari, S. J. Doherty, M. G. Flanner, W. K. M. Lau, J. Ming, H. Wang, M. Wang, S. G. Warren, and R. Zhang. 2015. Light-absorbing particles in snow and ice: measurement and modeling of climatic and hydrological impact. Adv. Atmos. Sci. 32 (1):64–91. doi:10.1007/s00376-014-0010-0.
  • Rossi, J., J. Uotila, S. Sharma, T. Laurila, R. Teissier, A. Baranov, E. Ikonen, and M. Vainio. 2021. Photoacoustic characteristics of carbon-based infrared absorbers. Photoacoustics 23:100265. doi:10.1016/j.pacs.2021.100265.
  • Sharma, N., I. J. Arnold, H. Moosmüller, W. P. Arnott, and C. Mazzoleni. 2013. Photoacoustic and nephelometric spectroscopy of aerosol optical properties with a supercontinuum light source. Atmos. Meas. Tech. 6 (12):3501–13. doi:10.5194/amt-6-3501-2013.
  • Tomberg, T., M. Vainio, T. Hieta, and L. Halonen. 2018. Sub-parts-per-trillion level sensitivity in trace gas detection by cantilever-enhanced photo-acoustic spectroscopy. Sci. Rep. 8 (1):1–7. doi:10.1038/s41598-018-20087-9.
  • Virkkula, A., T. Mäkelä, R. Hillamo, T. Yli-Tuomi, A. Hirsikko, K. Hämeri, and I. K. Koponen. 2007. A simple procedure for correcting loading effects of aethalometer data. J Air Waste Manag Assoc. 57 (10):1214–22. doi:10.3155/1047-3289.57.10.1214.
  • Wang, G., H. Yi, P. Hubert, A. Deguine, D. Petitprez, R. Maamary, E. Fertein, J. M. Rey, M. W. Sigrist, and W. Chen. 2017. Filter-free measurements of black carbon absorption using photoacoustic spectroscopy. Proc. SPIE 10111, Quantum Sensing and Nano Electronics and Photonics XIV 10111: 1011136. doi:10.1117/12.2251093.
  • Wiegand, J. R., L. D. Mathews, and G. D. Smith. 2014. A UV-Vis photoacoustic spectrophotometer. Anal. Chem. 86 (12):6049–56. doi:10.1021/ac501196u.
  • Xu, Y., and V. Ramanathan. 2017. Well below 2 C: mitigation strategies for avoiding dangerous to catastrophic climate changes. Proc. Natl. Acad. Sci. USA. 114 (39):10315–23. doi:10.1073/pnas.1618481114.
  • Yu, Z., G. Magoon, J. Assif, W. Brown, and R. Miake-Lye. 2019. A single-pass RGB differential photoacoustic spectrometer (RGB-DPAS) for aerosol absorption measurement at 473, 532, and 671 nm. Aerosol Sci. Technol. 53 (1):94–105. doi:10.1080/02786826.2018.1551611.