1,608
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

A direct-reading particle sizer with elemental composition analysis for large inhalable particles

ORCID Icon, , , , ORCID Icon &
Pages 223-233 | Received 14 Jun 2021, Accepted 27 Oct 2021, Published online: 17 Nov 2021

References

  • Alberti, A., A. Munafo, M. Koll, M. Nishihara, C. Pantano, J. B. Freund, G. S. Elliott, and M. Panesi. 2020. Laser-induced non-equilibrium plasma kernel dynamics. J. Phys. D Appl. Phys. 53 (2):025201. doi:10.1088/1361-6463/ab492a.
  • Anderson, K. R., D. Leith, M. Ndonga, and J. Volckens. 2015. Novel instrument to separate large inhalable particles. Aerosol Sci. Technol. 49 (12):1195–209. doi:10.1080/02786826.2015.1112874.
  • Baldwin, P. E. J., and A. D. Maynard. 1998. A Survey of Wind Speeds in Indoor Workplaces. Ann. Occup. Hyg. 42 (5):303–13. doi:10.1093/annhyg/42.5.303.
  • Boyce, C. P., S. N. Sax, and J. M. Cohen. 2017. Particle size distributions of lead measured in battery manufacturing and secondary smelter facilities and implications in setting workplace lead exposure limits. J. Occup. Environ. Hyg. 14 (8):594–608. doi:10.1080/15459624.2017.1309046.
  • Brieschenk, S., H. Kleine, and S. O'Byrne. 2013. The Effect of blast wave re-focusing on a laser-induced plasma. J. Appl. Phys. 113 (10):103101. doi:10.1063/1.4794017.
  • Brown, J. S., T. Gordon, O. Price, and B. Asgharian. 2013. Thoracic and respirable particle definitions for human health risk assessment. Part Fibre Toxicol. 10 (1):12. doi:10.1186/1743-8977-10-12.
  • Carranza, J. E., B. T. Fisher, G. D. Yoder, and D. W. Hahn. 2001. On-line analysis of ambient air aerosols using laser-induced breakdown spectroscopy. Spectrochim. Acta B At. Spectrosc. 56 (6):851–864. doi:10.1016/S0584-8547(01)00183-5.
  • Cheng, Y. S., Y. Zhou, and B. T. Chen. 1999. Particle deposition in a cast of human oral airways. Aerosol Sci. Technol. 31 (4):286–300. doi:10.1080/027868299304165.
  • Cremers, D. A., and L. J. Radziemski. 2013. Handbook of laser-induced breakdown spectroscopy. 2nd ed. Chichester, West Sussex, UK: John Wiley & Sons, Ltd.
  • de Vocht, F., W. Sobala, U. Wilczynska, H. Kromhout, N. Szeszenia-Dabrowska, and B. Peplonska. 2009. Cancer mortality and occupational exposure to aromatic amines and inhalable aerosols in rubber tire manufacturing in Poland. Cancer Epidemiol. 33 (2):94–102. doi:10.1016/j.canep.2009.06.013.
  • DeCarlo, P. F., J. G. Slowik, D. R. Worsnop, P. Davidovits, and J. L. Jimenez. 2004. Particle morphology and density characterization by combined mobility and aerodynamic diameter measurements. Part 1: theory. Aerosol Sci. Technol. 38 (12):1185–1205. doi:10.1080/027868290903907.
  • Diwakar, P., P. Kulkarni, and M. E. Birch. 2012. New approach for near-real-time measurement of elemental composition of aerosol using laser-induced breakdown spectroscopy. Aerosol Sci. Technol. 46 (3):316–332. doi:10.1080/02786826.2011.625059.
  • Fortes, F. J., A. Fernández-Bravo, and J. J. Laserna. 2014. Chemical characterization of single micro- and nano-particles by optical catapulting-optical trapping-laser-induced breakdown spectroscopy. Spectrochim. Acta B At. Spectrosc. 100:78–85. doi:10.1016/j.sab.2014.08.023.
  • Harmon, R. S., F. C. DeLucia, C. E. McManus, N. J. McMillan, T. F. Jenkins, M. E. Walsh, and A. Miziolek. 2006. Laser-induced breakdown spectroscopy: an emerging chemical sensor technology for real-time field-portable, geochemical, mineralogical, and environmental applications. Appl. Geochem. 21 (5):730–747. doi:10.1016/j.apgeochem.2006.02.003.
  • Heikkilä, P., J. Rossi, A. Rostedt, J. Huhtala, A. Järvinen, J. Toivonen, and J. Keskinen. 2020. Toward elemental analysis of ambient single particles using electrodynamic balance and laser-induced breakdown spectroscopy. Aerosol Sci. Technol. 54 (7):837–848. doi:10.1080/02786826.2020.1727408.
  • Hinds, W. C. 1999. Aerosol technology: properties, behavior, and measurement of airborne particles. 2nd ed. New York: Wiley.
  • ISO. 1995. Particle Size Fraction Definitions for Health-Related Sampling. ISO 7708. https://www.iso.org/obp/ui/#iso:std:iso:7708:en.
  • Järvinen, S. T., and J. Toivonen. 2016. Analysis of single mass-regulated particles in precisely controlled trap using laser-induced breakdown spectroscopy. Opt. Express 24 (2):1314–1323. doi:10.1364/oe.24.001314.
  • Jayne, J. T., D. C. Leard, X. Zhang, P. Davidovits, K. A. Smith, C. E. Kolb, and D. R. Worsnop. 2000. Development of an aerosol mass spectrometer for size and composition analysis of submicron particles. Aerosol Sci. Technol. 33 (1–2):49–70. doi:10.1080/027868200410840.
  • Kim, G., K. Kim, H. Maeng, H. Lee, and K. Park. 2019. Development of aerosol-LIBS (laser induced breakdown spectroscopy) for real-time monitoring of process-induced particles. Aerosol Air Qual. Res. 19 (3):455–460. doi:10.4209/aaqr.2018.08.0312.
  • Kramida, A., K. Olsen, and Y. Ralchenko. 2019. NIST LIBS Database. National Institute of Standards and Technology (NIST). https://physics.nist.gov/PhysRefData/ASD/LIBS/libs-form.html.
  • Kumar, A. U., B. S. Leonov, Y. Wu, and C. Limbach. 2021. Spatio-temporal studies on laser induced plasma interactions with micro-particles using stereo-imaging. Paper presented at the AIAA Q2 Scitech 2021 Forum, Virtual Event, January 19–21. doi:10.2514/6.2021-1376.
  • Lehnert, M., B. Pesch, A. Lotz, J. Pelzer, B. Kendzia, K. Gawrych, and E. Heinze. 2012. Exposure to inhalable, respirable, and ultrafine particles in welding fume. Ann. Occup. Hyg. 56 (5):557–567. doi:10.1093/annhyg/mes025.
  • Li, K., F. Aghazadeh, S. Hatipkarasulu, and T. G. Ray. 2003. Health risks from exposure to metal-working fluids in machining and grinding operations. Int. J. Occup. Saf. Ergon. 9 (1):75–95. doi:10.1080/10803548.2003.11076555.
  • Lidén, G., L. Juringe, and A. Gudmundsson. 2000. Workplace validation of a laboratory evaluation test of samplers for inhalable and “total” dust. J. Aerosol Sci. 31 (2):199–219. doi:10.1016/S0021-8502(99)00049-X.
  • Lin, C. C., M. R. Chen, S. L. Chang, W. H. Liao, and H. L. Chen. 2015. Characterization of ambient particles size in workplace of manufacturing physical fitness equipments. Ind. Health. 53 (1):78–84. doi:10.2486/indhealth.2014-0160.
  • Linnainmaa, M., J. Laitinen, A. Leskinen, O. Sippula, and P. Kalliokoski. 2008. Laboratory and field testing of sampling methods for inhalable and respirable dust. J. Occup. Environ. Hyg. 5 (1):28–35. doi:10.1080/15459620701763723.
  • Manninen, A., M. Putkiranta, A. Rostedt, J. Saarela, T. Laurila, M. Marjamäki, J. Keskinen, and R. Hernberg. 2008. Instrumentation for measuring fluorescence cross sections from airborne microsized particles. Appl. Opt. 47 (2):110–115. doi:10.1364/AO.47.000110.
  • OSHA. 2005. “Permissible Exposure Limits (PELs).” http://www.osha.gov/SLTC/pel/.
  • Panne, U., R. E. Neuhauser, M. Theisen, H. Fink, and R. Niessner. 2001. Analysis of heavy metal aerosols on filters by laser-induced plasma spectroscopy. Spectrochim. Acta B At. Spectrosc. 56 (6):839–850. doi:10.1016/S0584-8547(01)00209-9.
  • Pinnick, R. G., J. M. Rosen, and D. J. Hofmann. 1973. Measured light-scattering properties of individual aerosol particles compared to mie scattering theory. Appl. Opt. 12 (1):37–41. doi:10.1364/ao.12.000037.
  • Salvaggio, J. E. 1994. Inhaled particles and respiratory disease. J. Allergy Clin. Immunol. 94 (2):304–309. doi:10.1053/ai.1994.v94.a56009.
  • Schneider, C. A., W. S. Rasband, and K. W. Eliceiri. 2012. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 9 (7):671–675. doi:10.1038/nmeth.2089.
  • Su, Y. Y., Z. M. Li, M. Li, X. W. Yi, G. Q. Zhou, J. Xu, L. H. Zhai, G. Y. Wei, and F. R. Zhu. 2014. Development of aerosol sample introduction interface coupled with ICP-MS for direct introduction and quantitative online monitoring of environmental aerosol. Aerosol Sci. Technol. 48 (1):99–107. doi:10.1080/02786826.2013.861894.
  • Tjärnhage, T., P. Gradmark, A. Larsson, A. Mohammed, L. Landström, E. Sagerfors, P. Jonsson, F. Kullander, and M. Andersson. 2013. Development of a laser-induced breakdown spectroscopy instrument for detection and classification of single-particle aerosols in real-time. Opt. Commun. 296:106–108. doi:10.1016/j.optcom.2013.01.044.
  • Voisey, K. T., S. S. Kudesia, W. S. O. Rodden, D. P. Hand, J. D. C. Jones, and T. W. Clyne. 2003. Melt ejection during laser drilling of metals. Mater. Sci. Eng. A. 356 (1–2):414–424. doi:10.1016/S0921-5093(03)00155-2.
  • Volckens, J., and T. M. Peters. 2005. Counting and particle transmission efficiency of the aerodynamic particle sizer. J. Aerosol Sci. 36 (12):1400–1408. doi:10.1016/j.jaerosci.2005.03.009.
  • Volkwein, J. C., A. D. Maynard, and M. Harper. 2011. Workplace aerosol measurement. In Aerosol measurement: principles, techniques, and applications, ed. P. Kulkarni, P. A. Baron, and K. Willeke, 3rd ed., 571–590. Hoboken, NJ: John Wiley and Sons. doi:10.1002/9781118001684.ch25.
  • Wilschefski, S., and M. Baxter. 2019. Inductively Coupled Plasma Mass Spectrometry: Introduction to Analytical Aspects. Clin. Biochem. Rev. 40 (3):115–133. doi:10.33176/aacb-19-00024.
  • Xiong, G., S. Li, Y. Zhang, S. G. Buckley, and D. T. Stephen. 2016. Phase-selective laser-induced breakdown spectroscopy of metal-oxide nanoparticle aerosols with secondary resonant excitation during flame synthesis. J. Anal. At. Spectrom. 31 (2):482–491. doi:10.1039/C5JA00186B.
  • Youlden, D. R., S. M. Cramb, S. Peters, S. V. Porceddu, H. Møller, L. Fritschi, and P. D. Baade. 2013. International comparisons of the incidence and mortality of sinonasal cancer. Cancer Epidemiol. 37 (6):770–779. doi:10.1016/j.canep.2013.09.014.