481
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Predicting indoor deposited particle resuspension with a new probabilistic model based on Markov chain and turbulent burst

ORCID Icon, , &
Pages 205-222 | Received 25 Jun 2021, Accepted 25 Oct 2021, Published online: 29 Nov 2021

References

  • And, E. Y., P. K. Hopke, and L. Wallace. 1999. Receptor modeling assessment of particle total exposure assessment methodology data. Environ. Sci. Technol. 33 (20):3645–52. doi: 10.1021/es981122i.
  • Arlian, L. G., J. S. Neal, M. S. Morgan, C. M. Rapp, and A. L. Clobes. 2001. Distribution and removal of cat, dog and mite allergens on smooth surfaces in homes with and without pets. Ann. Allergy. Asthma Immunol. 87 (4):296–302. doi: 10.1016/S1081-1206(10)62243-0.
  • Boor, B. E., J. A. Siegel, and A. Novoselac. 2013. Wind tunnel study on aerodynamic particle resuspension from monolayer and multilayer deposits on linoleum flooring and galvanized sheet metal. Aerosol Sci. Technol 47 (8):848–57. doi: 10.1080/02786826.2013.794929.
  • Chen, C.,. C. H. Lin, Z. Long, and Q. Chen. 2014. Predicting transient particle transport in enclosed environments with the combined computational fluid dynamics and Markov chain method. Indoor Air. 24 (1):81–92. doi: 10.1111/ina.12056.
  • Chen, C.,. W. Liu, C.-H. Lin, and Q. Chen. 2015. A Markov chain model for predicting transient particle transport in enclosed environments. Build. Environ. 90:30–6. doi: 10.1016/j.buildenv.2015.03.024.
  • Chen, F., S. C. M. Yu, and A. C. K. Lai. 2006. Modeling particle distribution and deposition in indoor environments with a new drift–flux model. Atmos. Environ 40 (2):357–67. doi: 10.1016/j.atmosenv.2005.09.044.
  • Cleaver, J., and B. Yates. 1973. Mechanism of detachment of colloidal particles from a flat substrate in a turbulent flow. J. Colloid Interface Sci. 44 (3):464–74. doi: 10.1016/0021-9797(73)90323-8.
  • Ferro, A. R., R. J. Kopperud, and L. M. Hildemann. 2004. Source strengths for indoor human activities that resuspend particulate matter. Environ. Sci. Technol. 38 (6):1759–64. doi: 10.1021/es0263893.
  • Giess, P., A. Goddard, and G. Shaw. 1997. Factors affecting particle resuspension from grass swards. J. Aerosol Sci. 28 (7):1331–49. doi: 10.1016/S0021-8502(97)00021-9.
  • Goldasteh, I., G. Ahmadi, and A. R. Ferro. 2013. Monte Carlo simulation of micron size spherical particle removal and resuspension from substrate under fluid flows. J. Aerosol Sci. 66:62–71. doi: 10.1016/j.jaerosci.2013.07.012.
  • Gomes, C., J. Freihaut, and W. Bahnfleth. 2007. Resuspension of allergen-containing particles under mechanical and aerodynamic disturbances from human walking. Atmos. Environ. 41 (25):5257–70. doi: 10.1016/j.atmosenv.2006.07.061.
  • Habchi, C., K. Ghali, and N. Ghaddar. 2016. Coupling CFD and analytical modeling for investigation of monolayer particle resuspension by transient flows. Build Environ 105:1–12. doi: 10.1016/j.buildenv.2016.05.025.
  • Henry, C., and J. P. Minier. 2014. A stochastic approach for the simulation of particle resuspension from rough substrates: Model and numerical implementation. J. Aerosol Sci. 77:168–92. doi: 10.1016/j.jaerosci.2014.08.005.
  • Krauter, P., and A. Biermann. 2007. Reaerosolization of fluidized spores in ventilation systems. Appl. Environ. Microbiol. 73 (7):2165–72. doi: 10.1128/AEM.02289-06.
  • Liu, Z., S. Ma, G. Cao, C. Meng, and B.-J. He. 2018. Distribution characteristics, growth, reproduction and transmission modes and control strategies for microbial contamination in HVAC systems: A literature review. Energy Buildings 177:77–95. doi: 10.1016/j.enbuild.2018.07.050.
  • Liu, W., R. You, and C. Chen. 2019. Modeling transient particle transport by fast fluid dynamics with the Markov chain method. Build. Simul. 12 (5):881–9. doi: 10.1007/s12273-019-0513-9.
  • Mei, X., and G. Gong. 2018. Predicting airborne particle deposition by a modified Markov chain model for fast estimation of potential contaminant spread. Atmos. Environ. 185:137–46. doi: 10.1016/j.atmosenv.2018.04.050.
  • Mei, X., G. Gong, H. Su, P. Peng, J. Liu, and H. Xie. 2017. A grid-merging operation to accelerate the Markov chain model in predicting steady-state and transient transmission of airborne particles. Build Environ. 122:82–93. doi: 10.1016/j.buildenv.2017.05.038.
  • Mei, X., T. Zhang, and S. Wang. 2016. Experimental investigation of jet-induced resuspension of indoor deposited particles. Aerosol Sci. Technol. 50 (3):230–41. doi: 10.1080/02786826.2016.1143084.
  • Mortazavi, R. 2005. Reentrainment of submicron solid particles. Ph.D. Thesis., Virginia Commonwealth University, Richmond, VA, USA.
  • Nicas, M. 2000. Markov modeling of contaminant concentrations in indoor air. AIHAJ 61 (4):484–91. doi: 10.1080/15298660008984559.
  • Nicholson, K. 1993. Wind tunnel experiments on the resuspension of particulate material. Atmos. Environ. Part A 27 (2):181–8. doi: 10.1016/0960-1686(93)90349-4.
  • Qian, J., J. Peccia, and A. R. Ferro. 2014. Walking-induced particle resuspension in indoor environments. Atmos. Environ. 89:464–81. doi: 10.1016/j.atmosenv.2014.02.035.
  • Reeks, M. W., and D. Hall. 2001. Kinetic models for particle resuspension in turbulent flows: theory and measurement. J. Aerosol Sci. 32 (1):1–31. doi: 10.1016/S0021-8502(00)00063-X.
  • Reeks, M. W., J. Reed, and D. Hall. 1988. On the resuspension of small particles by a turbulent flow. J. Phys. D: Appl. Phys. 21 (4):574–89. doi: 10.1016/0021-8502(95)97197-M.
  • Theerachaisupakij, W., S. Matsusaka, Y. Akashi, and H. Masuda. 2003. Reentrainment of deposited particles by drag and aerosol collision. J. Aerosol Sci. 34 (3):261–74. doi: 10.1016/S0021-8502(02)00180-5.
  • White, F. M. 1986. Fluid Mechanics. New York: McGraw-Hill.
  • Wu, T., M. Täubel, R. Holopainen, A.-K. Viitanen, S. Vainiotalo, T. Tuomi, J. Keskinen, A. Hyvärinen, K. Hämeri, S. E. Saari, et al. 2018. Infant and Adult Inhalation Exposure to Resuspended Biological Particulate Matter. Environ. Sci. Technol. 52 (1):237–47. doi: 10.1021/acs.est.7b04183.
  • Zhang, T., P. Li, Y. Zhao, and S. Wang. 2013. Various air distribution modes on commercial airplanes-part 2: computational fluid dynamics modeling and validation. HVACR Res. 19 (5):457–70. doi: 10.1080/10789669.2013.789368.
  • Zhang, Z.,. W. Zhang, Z. Zhai, and Q. Chen. 2007. Evaluation of various turbulence models in predicting airflow and turbulence in enclosed environments by CFD: Part 2-Comparison with experimental data from literature. HVAC&R Res. 13 (6):871–86. doi: 10.1080/10789669.2007.10391460.
  • Zhu, Y., B. Zhao, B. Zhou, and Z. Tan. 2012. A particle resuspension model in ventilation ducts. Aerosol Sci. Technol. 46 (2):222–35. doi: 10.1080/02786826.2011.618471.
  • Ziskind, G., M. Fichman, and C. Gutfinger. 1995. Resuspension of particulates from surfaces to turbulent flows—Review and analysis. J. Aerosol Sci. 26 (4):613–44. doi: 10.1016/0021-8502(94)00139-P.
  • Zuo, B., K. Zhong, and Y. Kang. 2015. An experimental study on particle resuspension in a room with impinging jet ventilation. Build Environ. 89:48–58. doi: 10.1016/j.buildenv.2015.01.031.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.