751
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

The use of acoustic streaming in Sub-micron particle sorting

, ORCID Icon, & ORCID Icon
Pages 247-260 | Received 03 Aug 2021, Accepted 08 Nov 2021, Published online: 29 Nov 2021

References

  • Bach, J. S., and H. Bruus. 2020. Suppression of acoustic streaming in shape-optimized channels. Phys. Rev. Lett. 124 (21):214501.
  • Barnkob, R., P. Augustsson, T. Laurell, and H. Bruus. 2010. Measuring the local pressure amplitude in microchannel acoustophoresis. Lab Chip. 10 (5):563–70. doi:10.1039/b920376a.
  • Bontempi, E. 2020. First data analysis about possible COVID-19 virus airborne diffusion due to air particulate matter (PM): The case of Lombardy (Italy). Environ. Res. 186:109639. doi:10.1016/j.envres.2020.109639.
  • Buonanno, G., L. Stabile, and L. Morawska. 2014. Personal exposure to ultrafine particles: the influence of time-activity patterns. Sci. Total Environ. 468–469 (468):903–7. doi:10.1016/j.scitotenv.2013.09.016.
  • Chen, B., P. Jia, and J. Han. 2021. Role of indoor aerosols for COVID-19 viral transmission: a review. Environ. Chem. Lett. 19 (3):1953–70. doi:10.1007/s10311-020-01174-8.
  • Comunian, S., D. Dongo, C. Milani, and P. Palestini. 2020. Air pollution and COVID-19: The role of particulate matter in the spread and increase of COVID-19’s morbidity and mortality. IJERPH. 17 (12):4487. doi:10.3390/ijerph17124487.
  • Dain, Y., M. Fichman, C. Gutfinger, D. Pnueli, and P. Vainshtein. 1995. Dynamics of suspended particles in a two-dimensional high-frequency sonic field. J. Aerosol Sci. 26 (4):575–594.
  • Devendran, C., I. Gralinski, and A. Neild. 2014. Separation of particles using acoustic streaming and radiation forces in an open microfluidic channel. Microfluid. Nanofluid. 17 (5):879–90. doi:10.1007/s10404-014-1380-4.
  • Ding, X., S. S. Lin, M. I. Lapsley, S. Li, X. Guo, C. Y. Chan, I. Chiang, L. Wang, J. P. McCoy, and T. J. Huang. 2012. Standing surface acoustic wave (SSAW) based multichannel cell sorting. Lab Chip. 12 (21):4228–31. doi:10.1039/c2lc40751e.
  • Dual, J., and T. Schwarz. 2012. Acoustofluidics 3: Continuum mechanics for ultrasonic particle manipulation. Lab Chip. 12 (2):244–52. doi:10.1039/c1lc20837c.
  • Dukhin, A. S., and P. J. Goetz. 2009. Bulk viscosity and compressibility measurement using acoustic spectroscopy. J. Chem. Phys. 130 (12):124519.
  • Ferro, A., R. Kopperud, and L. Hildemann. 2004. Elevated personal exposure to particulate matter from human activities in a residence. J. Expo. Sci. Environ. Epidemiol. 14 (S1):S34–S40. doi:10.1038/sj.jea.7500356.
  • Glynne-Jones, P., and M. Hill. 2013. Acoustofluidics 23: Acoustic manipulation combined with other force fields. Lab Chip. 13 (6):1003–10. doi:10.1039/c3lc41369a.
  • Graves, R. E., and B. M. Argrow. 1999. Bulk viscosity: past to present. J. Thermophys. Heat Transf 13 (3):337–42. doi:10.2514/2.6443.
  • Gupta, S., and A. Bit. 2019. Acoustophoresis-based biomedical device applications. In Bioelectronics and medical devices, 123–44. Cambridge: Woodhead Publishing.
  • Jaques, P. A., and C. S. Kim. 2000. Measurement of total lung deposition of inhaled ultrafine particles in healthy men and women. Inhal. Toxicol. 12 (8):715–31.
  • Jørgensen, R. B., M. Buhagen, and S. Føreland. 2016. Personal exposure to ultrafine particles from PVC welding and concrete work during tunnel rehabilitation. Occup. Environ. Med. 73 (7):467–73.
  • Karlsen, J. T., W. Qiu, P. Augustsson, and H. Bruus. 2018. Acoustic streaming and its suppression in inhomogeneous Fluids. Phys. Rev. Lett. 120 (5):054501.
  • Koponen, I. K., A. J. Koivisto, and K. A. Jensen. 2015. Worker exposure and high time-resolution analyses of process-related submicrometre particle concentrations at mixing stations in two paint factories. Ann. Occup. Hyg. 59 (6):749–63. doi:10.1093/annhyg/mev014.
  • Lee, S., H. Kim, H. Kwon, K. Kim, S. Yoo, U. Hong, J. Hwang, and Y. Kim. 2019. MEMS based particle size analyzer using electrostatic measuring techniques. 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII): 1289–92.
  • Lenshof, A., and T. Laurell. 2010. Continuous separation of cells and particles in microfluidic systems. Chem. Soc. Rev. 39 (3):1203–17.
  • Liu, F., N. L. Ng, and H. Lu. 2021. Emerging applications of microfluidic techniques for in vitro toxicity studies of atmospheric particulate matter. Aerosol Sci. Technol. 55 (6):623–39. doi:10.1080/02786826.2021.1879373.
  • Metcalf, A. R., S. Narayan, and C. S. Dutcher. 2018. A review of microfluidic concepts and applications for atmospheric aerosol science. Aerosol Sci. Technol. 52 (3):310–29. doi:10.1080/02786826.2017.1408952.
  • Muller, P. B., R. Barnkob, M. J. H. Jensen, and H. Bruus. 2012. A numerical study of microparticle acoustophoresis driven by acoustic radiation forces and streaming-induced drag forces. Lab Chip. 12 (22):4617–27. doi:10.1039/c2lc40612h.
  • Nor, N. S. M., C. W. Yip, N. Ibrahim, M. H. Jaafar, Z. Z. Rashid, N. Mustafa, H. H. A. Hamid, K. Chandru, M. T. Latif, P. E. Saw, et al. 2021. Particulate matter (PM2.5) as a potential SARS-CoV-2 carrier. Sci. Rep. 11 (1):2508.
  • Othman, M., and M. T. Latif. 2021. Air pollution impacts from COVID-19 pandemic control strategies in Malaysia. J. Clean Prod. 291:125992. doi:10.1016/j.jclepro.2021.125992.
  • Petersson, F., L. Åberg, A. M. Swärd-Nilsson, and T. Laurell. 2007. Free flow acoustophoresis: microfluidic-based mode of particle and cell separation. Anal. Chem. 79 (14):5117–23.
  • Pietroiusti, A., and A. Magrini. 2014. Engineered nanoparticles at the workplace: current knowledge about workers’ risk. Occup. Med. 64 (5):319–30. doi:10.1093/occmed/kqu051.
  • Reich, B. J., M. Fuentes, and J. Burke. 2008. Analysis of the effects of ultrafine particulate matter while accounting for human exposure. Environmetrics 20 (2):131–46. doi:10.1002/env.915.
  • Ryan, P. H., S. Y. Son, C. Wolfe, J. Lockey, C. Brokamp, and G. LeMasters. 2015. A field application of a personal sensor for ultrafine particle exposure in children. Sci. Total Environ. 508:366–73. doi:10.1016/j.scitotenv.2014.11.061.
  • Sajeesh, P., and A. K. Sen. 2014. Particle separation and sorting in microfluidic devices: a review. Microfluid. Nanofluid. 17 (1):1–52. doi:10.1007/s10404-013-1291-9.
  • Salafi, T., K. K. Zeming, and Y. Zhang. 2016. Advancements in microfluidics for nanoparticle separation. Lab Chip. 17 (1):11–33. doi:10.1039/c6lc01045h.
  • Settnes, M., and H. Bruus. 2012. Forces acting on a small particle in an acoustical field in a viscous fluid. Phys. Rev. E. 85 (1):016327. doi:10.1103/PhysRevE.85.016327.
  • Shao, L., S. Ge, T. Jones, M. Santosh, L. F. O. Silva, Y. Cao, M. L. S. Oliveira, M. Zhang, and K. BéruBé. 2021. The role of airborne particles and environmental considerations in the transmission of SARS-CoV-2. Geosci. Front 12 (5):101189. doi:10.1016/j.gsf.2021.101189.
  • Sioutas, C., R. J. Delfino, and M. Singh. 2005. Exposure assessment for atmospheric ultrafine particles (UFPs) and implications in epidemiologic research. Environ Health Perspect 113 (8):947–55. doi:10.1289/ehp.7939.
  • Spigarelli, L., N. S. Vasile, C. F. Pirri, and G. Canavese. 2020. Numerical study of the effect of channel aspect ratio on particle focusing in acoustophoretic devices. Sci. Rep. 10 (1):19447.
  • Stokes, G. 2009. On the effect of the internal friction of fluids on the motion of pendulums. In Mathematical and physical papers, 1–10. Cambridge: Cambridge University Press.
  • Wiklund, M., R. Green, and M. Ohlin. 2012. Acoustofluidics 14: Applications of acoustic streaming in microfluidic devices. Lab Chip. 12 (14):2438–51. doi:10.1039/c2lc40203c.
  • Wu, M., A. Ozcelik, J. Rufo, Z. Wang, R. Fang, and T. Jun Huang. 2019. Acoustofluidic separation of cells and particles. Microsyst. Nanoeng. 5:32. doi:10.1038/s41378-019-0064-3.
  • Yuen, W. T., S. C. Fu, and C. Y. Chao. 2016. The correlation between acoustic streaming patterns and aerosol removal efficiencies in an acoustic aerosol removal system. Aerosol Sci. Technol. 50 (1):52–62. doi:10.1080/02786826.2015.1124986.
  • Yuen, W. T., S. C. Fu, and C. Y. H. Chao. 2017. The effect of aerosol size distribution and concentration on the removal efficiency of an acoustic aerosol removal system. J. Aerosol Sci. 104:79–89. doi:10.1016/j.jaerosci.2016.11.014.
  • Yuen, W. T., S. C. Fu, J. K. C. Kwan, and C. Y. H. Chao. 2014. The use of nonlinear acoustics as an energy-efficient technique for aerosol removal. Aerosol Sci. Technol. 48 (9):907–15. doi:10.1080/02786826.2014.938800.
  • Zhang, P., H. Bachman, A. Ozcelik, and T. J. Huang. 2020. Acoustic Microfluidics. Annu Rev Anal Chem (Palo Alto, CA) 13 (1):17–43.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.