1,281
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Validating CFD predictions of nasal spray deposition: Inclusion of cloud motion effects for two spray pump designs

, , , , , , , & show all
Pages 305-322 | Received 28 Jul 2021, Accepted 22 Nov 2021, Published online: 28 Dec 2021

References

  • Azimi, M., M. Hindle, P. W. Longest, and R. L. Walenga. 2016. Comparison of the in vitro deposition of Nasonex nasal spray product in two realistic nasal airway models. Respiratory Drug Deliv. 2016:617–21.
  • Bass, K., S. Boc, M. Hindle, K. Dodson, and W. Longest. 2019. High-efficiency nose-to-lung aerosol delivery in an infant: Development of a validated computational fluid dynamics method. J. Aerosol Med. Pulm. Drug Deliv. 32 (3):132–48. doi:10.1089/jamp.2018.1490.
  • Bass, K., and P. W. Longest. 2018. Recommendations for simulating microparticle deposition at conditions similar to the upper airways with two-equation turbulence models. J. Aerosol Sci. 119:31–50. doi:10.1016/j.jaerosci.2018.02.007.
  • Basu, S., L. T. Holbrook, K. Kudlaty, O. Fasanmade, J. Wu, A. Burke, B. W. Langworthy, Z. Farzal, M. Mamdani, W. D. Bennett, et al. 2020. Numerical evaluation of spray position for improved nasal drug delivery. Sci. Rep. 10 (1):1–18. doi:10.1038/s41598-020-66716-0.
  • Carrigy, N. B., C. A. Ruzycki, L. Golshahi, and W. H. Finlay. 2014. Pediatric in vitro and in silico models of deposition via oral and nasal inhalation. J. Aerosol. Med. Pulm. Drug Deliv. 27 (3):149–69. doi:10.1089/jamp.2013.1075.
  • Chari, S., K. Sridhar, R. Walenga, and C. Kleinstreuer. 2021. Computational analysis of a 3D mucociliary clearance model predicting nasal drug uptake. J. Aerosol Sci. 155:105757. doi:10.1016/j.jaerosci.2021.105757.
  • Chen, J. Z., M. Kiaee, A. Martin, and W. H. Finlay. 2020. In vitro assessment of an idealized nose for nasal spray testing: Comparison with regional deposition in realistic nasal replicas. Int. J. Pharm. 582:119341. doi:10.1016/j.ijpharm.2020.119341.
  • Choi, S. H., Y. Wang, D. S. Conti, S. G. Raney, R. Delvadia, A. A. Leboeuf, and K. Witzmann. 2018. Generic drug device combination products: Regulatory and scientific considerations. Int. J. Pharm. 544 (2):443–54. doi:10.1016/j.ijpharm.2017.11.038.
  • Corley, R. A., S. Kabilan, A. P. Kuprat, J. P. Carson, K. R. Minard, R. E. Jacob, C. Timchalk, R. Glenny, S. Pipavath, T. Cox, et al. 2012. Comparative computational modeling of airflows and vapor dosimetry in the respiratory tracts of rat, monkey, and human. Toxicol. Sci. 128 (2):500–16. doi:10.1093/toxsci/kfs168.
  • Csaba, N., M. Garcia-Fuentes, and M. J. Alonso. 2009. Nanoparticles for nasal vaccination. Adv. Drug Deliv. Rev. 61 (2):140–57. doi:10.1016/j.addr.2008.09.005.
  • Dayal, P., V. Pillay, R. J. Babu, and M. Singh. 2005. Box-Behnken experimental design in the development of a nasal drug delivery system of model drug hydroxyurea: Characterization of viscosity, in vitro drug release, droplet size, and dynamic surface tension. AAPS PharmSciTech. 6 (4):E573–E85. doi:10.1208/pt060472.
  • Dayal, P., M. S. Shaik, and M. Singh. 2004. Evaluation of different parameters that affect droplet-size distribution from nasal sprays using the Malvern Spraytec®. J. Pharm. Sci. 93 (7):1725–42. doi:10.1002/jps.20090.
  • Djupesland, P. G. 2013. Nasal drug delivery devices: Characteristics and performance in a clinical perspective-a review. Drug Deliv. Transl. Res. 3 (1):42–62. doi:10.1007/s13346-012-0108-9.
  • Dykewicz, M. S., and D. L. Hamilos. 2010. Rhinitis and sinusitis. J. Allergy Clin. Immunol. 125 (2 Suppl 2):S103–S15. doi:10.1016/j.jaci.2009.12.989.
  • Feng, Y., H. Hayati, A. J. Bates, K. Walter, L. Matthias, B. Odo, O. Ramiro, and K. Gerda. 2021. Clinical CFD applications 2. In Clinical and Biomedical Engineering in the Human Nose, 225–53. Singapore: Springer.
  • Foo, M. Y., Y. S. Cheng, W. C. Su, and M. D. Donovan. 2007. The influence of spray properties on intranasal deposition. J. Aerosol Med. 20 (4):495–508. doi:10.1089/jam.2007.0638.
  • Foo, M. Y., N. Sawant, E. Overholtzer, and M. D. Donovan. 2018. A simplified geometric model to predict nasal spray deposition in children and adults. AAPS PharmSciTech. 19 (7):2767–77. doi:10.1208/s12249-018-1031-2.
  • Frank, D. O., J. S. Kimbell, S. Pawar, and J. S. Rhee. 2012. Effects of anatomy and particle size on nasal sprays and nebulizers. Otolaryngol. Head Neck Surg. 146 (2):313–9. doi:10.1177/0194599811427519.
  • Fung, M. C., K. Inthavong, W. Yang, P. Lappas, and J. Tu. 2013. External characteristics of unsteady spray atomization from a nasal spray device. J. Pharm. Sci. 102 (3):1024–35. doi:10.1002/jps.23449.
  • Fung, M. C., K. Inthavong, W. Yang, and J. Tu. 2012. CFD modeling of spray atomization for a nasal spray device. Aerosol Sci. Technol. 46 (11):1219–26. doi:10.1080/02786826.2012.704098.
  • Gao, M., X. Shen, and S. Mao. 2020. Factors influencing drug deposition in the nasal cavity upon delivery via nasal sprays. J. Pharm. Investig. 50 (3):251–9. doi:10.1007/s40005-020-00482-z.
  • Grmaš, J., K. Stare, D. Božič, R. Injac, and R. Dreu. 2017. Elucidation of formulation and delivery device-related effects on in vitro performance of nasal spray with implication to rational product specification identification. J. Aerosol Med. Pulm. Drug Deliv. 30 (4):230–46. doi:10.1089/jamp.2016.1328.
  • Guo, Y., B. Laube, and R. Dalby. 2005. The effect of formulation variables and breathing patterns on the site of nasal deposition in an anatomically correct model. Pharm. Res. 22 (11):1871–8. doi:10.1007/s11095-005-7391-9.
  • Guo, C., K. J. Stine, J. F. Kauffman, and W. H. Doub. 2008. Assessment of the influence factors on in vitro testing of nasal sprays using Box-Behnken experimental design. Eur. J. Pharm. Sci. 35 (5):417–26. doi:10.1016/j.ejps.2008.09.001.
  • Hosseini, S., T. A. Schuman, R. Walenga, J. V. Wilkins, Jr., A. Babiskin, and L. Golshahi. 2020. Use of anatomically-accurate 3-dimensional nasal airway models of adult human subjects in a novel methodology to identify and evaluate the internal nasal valve. Comput. Biol. Med. 123:103896. doi:10.1016/j.compbiomed.2020.103896.
  • Hosseini, S., X. Wei, J. V. Wilkins, Jr., C. P. Fergusson, R. Mohammadi, G. Vorona, and L. Golshahi. 2019. In vitro measurement of regional nasal drug delivery with Flonase,® Flonase® Sensimist,™ and MAD Nasal™ in anatomically correct nasal airway replicas of pediatric and adult human subjects. J. Aerosol Med. Pulm. Drug Deliv. 32 (6):374–85. doi:10.1089/jamp.2019.1523.
  • Inthavong, K., M. C. Fung, X. Tong, W. Yang, and J. Tu. 2014. High resolution visualization and analysis of nasal spray drug delivery. Pharm. Res. 31 (8):1930–7. doi:10.1007/s11095-013-1294-y.
  • Inthavong, K., M. C. Fung, W. Yang, and J. Tu. 2015. Measurements of droplet size distribution and analysis of nasal spray atomization from different actuation pressure. J. Aerosol Med. Pulm. Drug Deliv. 28 (1):59–67. doi:10.1089/jamp.2013.1093.
  • Inthavong, K., Q. J. Ge, C. M. K. Se, W. Yang, and J. Y. Tu. 2011. Simulation of sprayed particle deposition in a human nasal cavity including a nasal spray device. J. Aerosol Sci. 42 (2):100–13. doi:10.1016/j.jaerosci.2010.11.008.
  • Kannan, R. R., A. J. Przekwas, N. Singh, R. Delvadia, G. Tian, and R. Walenga. 2017. Pharmaceutical aerosols deposition patterns from a Dry Powder Inhaler: Euler Lagrangian prediction and validation. Med. Eng. Phys. 42:35–47. doi:10.1016/j.medengphy.2016.11.007.
  • Kiaee, M., H. Wachtel, M. L. Noga, A. R. Martin, and W. H. Finlay. 2019. An idealized geometry that mimics average nasal spray deposition in adults: A computational study. Comput. Biol. Med. 107:206–17. doi:10.1016/j.compbiomed.2019.02.013.
  • Kimbell, J. S., R. A. Segal, B. Asgharian, B. A. Wong, J. D. Schroeter, J. P. Southall, C. J. Dickens, G. Brace, and F. J. Miller. 2007. Characterization of deposition from nasal spray devices using a computational fluid dynamics model of the human nasal passages. J. Aerosol Med. 20 (1):59–74. doi:10.1089/jam.2006.0531.
  • Kleinstreuer, C., Z. Zhang, and J. F. Donohue. 2008. Targeted drug-aerosol delivery in the human respiratory system. Annu. Rev. Biomed. Eng. 10:195–220. doi:10.1146/annurev.bioeng.10.061807.160544.
  • Kolanjiyil, A. V., S. Hosseini, A. Alfaifi, M. Hindle, L. Golshahi, and P. W. Longest. 2021. Importance of cloud motion and two-way momentum coupling in the transport of pharmaceutical nasal sprays. J. Aerosol Sci. 156:105770. doi:10.1016/j.jaerosci.2021.105770.
  • Kolanjiyil, A. V., S. Hosseini, M. D. Manniello, A. Alfaifi, D. R. Farkas, M. Hindle, L. Golshahi, and P. W. Longest. 2020. Effect of spray momentum on nasal spray droplet transport and deposition. Respiratory Drug Deliv. 3 (1):691–6.
  • Koullapis, P., F. Stylianou, C.-L. Lin, S. Kassinos, and J. Sznitman. 2021. In silico methods to model dose deposition. In Inhaled Medicines, 167–95. Elsevier.
  • Kundoor, V., and R. Dalby. 2011. Effect of formulation- and administration-related variables on deposition pattern of nasal spray pumps evaluated using a nasal cast. Pharm. Res. 28 (8):1895–904. doi:10.1007/s11095-011-0417-6.
  • Kundoor, V., and R. N. Dalby. 2010. Assessment of nasal spray deposition pattern in a silicone human nose model using a color-based method. Pharm. Res. 27 (1):30–6. doi:10.1007/s11095-009-0002-4.
  • Laube, B. L., G. Sharpless, A. R. Vikani, V. Harrand, S. J. Zinreich, K. Sedberry, D. Knaus, J. Barry, and M. Papania. 2015. Intranasal deposition of Accuspray™ aerosol in anatomically correct models of 2-, 5-, and 12-year-old children. J. Aerosol Med. Pulm. Drug Deliv. 28 (5):320–33. doi:10.1089/jamp.2014.1174.
  • Le Guellec, S., S. Ehrmann, and L. Vecellio. 2021. In vitro–in vivo correlation of intranasal drug deposition. Adv. Drug Deliv. Rev. 170:340–52. doi:10.1016/j.addr.2020.09.002.
  • Li, B. V., F. Jin, S. L. Lee, T. Bai, B. Chowdhury, H. T. Caramenico, and D. P. Conner. 2013. Bioequivalence for locally acting nasal spray and nasal aerosol products: Standard development and generic approval. AAPS J. 15 (3):875–83. doi:10.1208/s12248-013-9494-2.
  • Liu, X., W. Doub, and C. Guo. 2011. Assessment of the influence factors on nasal spray droplet velocity using Phase-Doppler Anemometry (PDA). AAPS PharmSciTech. 12 (1):337–43. doi:10.1208/s12249-011-9594-1.
  • Liu, X., W. H. Doub, and C. Guo. 2010. Evaluation of droplet velocity and size from nasal spray devices using phase Doppler anemometry (PDA). Int. J. Pharm. 388 (1–2):82–7. doi:10.1016/j.ijpharm.2009.12.041.
  • Longest, P. W., K. Bass, R. Dutta, V. Rani, M. L. Thomas, A. El-Achwah, and M. Hindle. 2019. Use of computational fluid dynamics deposition modeling in respiratory drug delivery. Expert Opin. Drug Deliv. 16 (1):7–26. doi:10.1080/17425247.2019.1551875.
  • Longest, W., D. Farkas, K. Bass, and M. Hindle. 2019. Use of computational fluid dynamics (CFD) dispersion parameters in the development of a new DPI actuated with low air volumes. Pharm. Res. 36 (8):110. doi:10.1007/s11095-019-2644-1.
  • Longest, P. W., and M. Hindle. 2009. Evaluation of the Respimat Soft Mist inhaler using a concurrent CFD and in vitro approach. J. Aerosol Med. Pulm. Drug Deliv. 22 (2):99–112. doi:10.1089/jamp.2008.0708.
  • Longest, P. W., and L. T. Holbrook. 2012. In silico models of aerosol delivery to the respiratory tract - Development and applications. Adv. Drug Deliv. Rev. 64 (4):296–311. doi:10.1016/j.addr.2011.05.009.
  • Macias-Valle, L., and A. J. Psaltis. 2020. A scholarly review of the safety and efficacy of intranasal corticosteroids preparations in the treatment of chronic rhinosinusitis. Ear Nose Throat J. 100 (5):295–301.
  • Manniello, M. D., S. Hosseini, A. Alfaifi, A. R. Esmaeili, A. V. Kolanjiyil, R. Walenga, A. Babiskin, D. Sandell, R. Mohammadi, T. Schuman, et al. 2021. In vitro evaluation of regional nasal drug delivery using multiple anatomical nasal replicas of adult human subjects and two nasal sprays. Int. J. Pharm. 593:120103. doi:10.1016/j.ijpharm.2020.120103.
  • Marchisio, D. L., and R. O. Fox. 2013. Computational models for polydisperse particulate and multiphase systems. Cambridge, UK: Cambridge University Press.
  • Newman, S. P., G. R. Pitcairn, and R. N. Dalby. 2004. Drug delivery to the nasal cavity: In vitro and in vivo assessment. Crit. Rev. Ther. Drug Carrier Syst. 21 (1):21–66.
  • Pennington, J., P. Pandey, H. Tat, J. Willson, and B. Donovan. 2008. Spray pattern and droplet size analyses for high-shear viscosity determination of aqueous suspension corticosteroid nasal sprays. Drug Dev. Ind. Pharm. 34 (9):923–9. doi:10.1080/03639040802149046.
  • Pu, Y., A. P. Goodey, X. Fang, and K. Jacob. 2014. A comparison of the deposition patterns of different nasal spray formulations using a nasal cast. Aerosol Sci. Technol. 48 (9):930–8. doi:10.1080/02786826.2014.931566.
  • Rygg, A., M. Hindle, and P. Longest. 2016a. Linking suspension nasal spray drug deposition patterns to pharmacokinetic profiles: A proof-of-concept study using computational fluid dynamics. J. Pharm. Sci. 105 (6):1995–2004. doi:10.1016/j.xphs.2016.03.033.
  • Rygg, A., M. Hindle, and P. W. Longest. 2016b. Absorption and clearance of pharmaceutical aerosols in the human nose: Effects of nasal spray suspension particle size and properties. Pharm. Res. 33 (4):909–21. doi:10.1007/s11095-015-1837-5.
  • Rygg, A., and P. W. Longest. 2016. Absorption and clearance of pharmaceutical aerosols in the human nose: Development of a CFD model. J. Aerosol Med. Pulm. Drug Deliv. 29 (5):416–31. doi:10.1089/jamp.2015.1252.
  • Sawant, N., and M. D. Donovan. 2018. In vitro assessment of spray deposition patterns in a pediatric (12 year-old) nasal cavity model. Pharm. Res. 35 (5):1–12. doi:10.1007/s11095-018-2385-6.
  • Sosnowski, T. R., P. Rapiejko, J. Sova, and K. Dobrowolska. 2020. Impact of physicochemical properties of nasal spray products on drug deposition and transport in the pediatric nasal cavity model. Int. J. Pharm. 574:118911. doi:10.1016/j.ijpharm.2019.118911.
  • Storey-Bishoff, J., M. Noga, and W. H. Finlay. 2008. Deposition of micrometer-sized aerosol particles in infant nasal airway replicas. Aerosol Sci. 39 (12):1055–65. doi:10.1016/j.jaerosci.2008.07.011.
  • Suman, J. D., B. L. Laube, and R. Dalby. 2006. Validity of in vitro tests on aqueous spray pumps as surrogates for nasal deposition, absorption, and biologic response. J. Aerosol Med. 19 (4):510–21. doi:10.1089/jam.2006.19.510.
  • Suman, J. D., B. L. Laube, T.‐c. Lin, G. Brouet, and R. Dalby. 2002. Validity of in vitro tests on aqueous spray pumps as surrogates for nasal deposition. Pharm. Res. 19 (1):1–6. doi:10.1023/A:1013643912335.
  • Tong, X., J. Dong, Y. Shang, K. Inthavong, and J. Tu. 2016. Effects of nasal drug delivery device and its orientation on sprayed particle deposition in a realistic human nasal cavity. Comput. Biol. Med. 77:40–8. doi:10.1016/j.compbiomed.2016.08.002.
  • U.S. FDA. 2003. Draft guidance for industry: Bioavailability and bioequivalence studies for nasal aerosols and nasal sprays for local action. Washington, DC: US Food and Drug Administration.
  • Walenga, R. L., A. H. Babiskin, and L. Zhao. 2019. In silico methods for development of generic drug-device combination orally inhaled drug products. CPT Pharmacometrics Syst. Pharmacol. 8 (6):359–70. doi:10.1002/psp4.12413.
  • Walenga, R. L., G. Tian, M. Hindle, J. Yelverton, K. Dodson, and P. W. Longest. 2014. Variability in nose-to-lung aerosol delivery. J. Aerosol Sci. 78:11–29. doi:10.1016/j.jaerosci.2014.08.003.
  • Warnken, Z. N., H. D. Smyth, D. A. Davis, S. Weitman, J. G. Kuhn, R. O. Williams, and I. I. I. 2018. Personalized medicine in nasal delivery: The use of patient-specific administration parameters to improve nasal drug targeting using 3D-printed nasal replica casts. Mol. Pharm. 15 (4):1392–402. doi:10.1021/acs.molpharmaceut.7b00702.
  • Wilkins, J. V., L. Golshahi, N. Rahman, and L. Li. 2021. Evaluation of intranasal vaccine delivery using anatomical replicas of infant nasal airways. Pharm. Res. 38 (1):141–53. doi:10.1007/s11095-020-02976-9.
  • Xi, J., J. E. Yuan, Y. Zhang, D. Nevorski, Z. Wang, and Y. Zhou. 2016. Visualization and quantification of nasal and olfactory deposition in a sectional adult nasal airway cast. Pharm. Res. 33 (6):1527–41. doi:10.1007/s11095-016-1896-2.
  • Yeoh, G. H., C. P. Cheung, and J. Tu. 2013. Multiphase flow analysis using population balance modeling: Bubbles, drops and particles. Amsterdam: Butterworth-Heinemann.
  • Zhang, H., Z. Yang, J. Xiang, Z. Cui, J. Liu, and C. Liu. 2020. Intranasal administration of SARS-CoV-2 neutralizing human antibody prevents infection in mice. bioRxiv. doi:10.1101/2020.12.08.416677.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.