1,112
Views
6
CrossRef citations to date
0
Altmetric
Review Article

Dry aerosol particle deposition on indoor surfaces: Review of direct measurement techniques

, &
Pages 261-280 | Received 24 Feb 2021, Accepted 17 Nov 2021, Published online: 14 Dec 2021

References

  • Abadie, M., K. Limam, and F. Allard. 2001. Indoor particle pollution: Effect of wall textures on particle deposition. Build. Environ. 36 (7):821–7. doi:10.1016/S0360-1323(01)00007-5.
  • Amaral, S., J. de Carvalho, M. Costa, and C. Pinheiro. 2015. An overview of particulate matter measurement instruments. Atmosphere 6 (9):1327–45. doi:10.3390/atmos6091327.
  • Andronache, C. 2003. Estimated variability of below-cloud aerosol removal by rainfall for observed aerosol size distributions. Atmos. Chem. Phys. 3 (1):131–43. doi:10.5194/acp-3-131-2003.
  • Araya, C., A. Cazorla, and I. Reche. 2019. Detachment procedure of bacteria from atmospheric particles for flow-cytometry counting. Bio-Protocol 9 (12):e3273. doi:10.21769/BioProtoc.3273.
  • Baron, P. A., and K. Willeke. 2001. Aerosol measurement: Principles, techniques, and applications. 2nd ed. New York: Wiley Interscience.
  • Barth, T., G. Lecrivain, and U. Hampel. 2013. Particle deposition study in a horizontal turbulent duct flow using optical microscopy and particle size spectrometry. J. Aerosol Sci. 60:47–54. doi:10.1016/j.jaerosci.2013.02.004.
  • Ben Othmane, M. 2011. Compréhension Analyse et Maitrise des mécanismes d’encrassement dans les réseaux aérauliques des industries agroalimentaires. PhD diss., Ecole Nationale Vétérinaire Agroalimentaire et de l’Alimentation Nantes Atlantique (Oniris).
  • Ben Othmane, M., M. Havet, E. Gehin, and C. Solliec. 2010. Mechanisms of particle deposition in ventilation ducts for a food factory. Aerosol Sci. Technol. 44 (9):775–84. doi:10.1080/02786826.2010.490799.
  • Boor, B. E., J. A. Siegel, and A. Novoselac. 2013. Wind tunnel study on aerodynamic particle resuspension from monolayer and multilayer deposits on linoleum flooring and galvanized sheet metal. Aerosol Sci. Technol. 47 (8):848–57. doi:10.1080/02786826.2013.794929.
  • Bowers, W. D., R. L. Chuan, and T. M. Duong. 1991. A 200 MHz surface acoustic wave resonator mass microbalance. Rev. Sci. Instrum. 62 (6):1624–9. doi:10.1063/1.1142442.
  • Brussaard, C. P. D. 2004. Optimization of procedures for counting viruses by flow cytometry. Appl. Environ. Microbiol. 70 (3):1506–13. doi:10.1128/AEM.70.3.1506-1513.2004.
  • Burba, G. 2013. Eddy covariance method for scientific, industrial, agricultural, and regulatory applications: A field book on measuring ecosystem gas exchange and areal emission rates. Lincoln: LI-COR Biosciences.
  • Burkett, M. W., R. A. Martin, D. L. Fenton, and M. V. Gunaji. 1984. Fire simulation in nuclear facilities – the FIRAC code and supporting experiment. Paper presented at the 18th DOE Nuclear Airborne Waste Management and Air Cleaning Conference, Baltimore, MD.
  • Campanella, H., A. Uranga, A. Romano-Rodríguez, J. Montserrat, G. Abadal, N. Barniol, and J. Esteve. 2008. Localized-mass detection based on thin-film bulk acoustic wave resonators (FBAR): Area and mass location aspects. Sens. Actuators, A 142 (1):322–8. doi:10.1016/j.sna.2007.05.004.
  • Campanella, H., J. Esteve, J. Montserrat, A. Uranga, G. Abadal, N. Barniol, and A. Romano-Rodríguez. 2006. Localized and distributed mass detectors with high sensitivity based on thin-film bulk acoustic resonators. Appl. Phys. Lett. 89 (3):033507. doi:10.1063/1.2234305.
  • Chate, D. M., and T. S. Pranesha. 2004. Field studies of scavenging of aerosols by rain events. J. Aerosol Sci. 35 (6):695–706. doi:10.1016/j.jaerosci.2003.09.007.
  • Chen, D.-R., and D. Y. H. Pui. 1995. Numerical and experimental studies of particle deposition in a tube with a conical contraction—Laminar flow regime. J. Aerosol Sci. 26 (4):563–74. doi:10.1016/0021-8502(94)00127-K.
  • Cohen Hubal, E. A., J. C. Suggs, M. G. Nishioka, and W. A. Ivancic. 2005. Characterizing residue transfer efficiencies using a fluorescent imaging technique. J. Expo. Anal. Environ. Epidemiol. 15 (3):261–70. doi:10.1038/sj.jea.7500400.
  • Da, G., E. Géhin, M. Ben Othmane, M. Havet, C. Solliec, and C. Motzkus. 2015. An experimental approach to measure particle deposition in large circular ventilation ducts. Environ. Sci. Pollut. Res. Int. 22 (7):4873–80. doi:10.1007/s11356-014-2859-y.
  • Darquenne, C. 2012. Aerosol deposition in health and disease. J. Aerosol Med. Pulm. Drug Deliv. 25 (3):140–7. doi:10.1089/jamp.2011.0916.
  • Darwish, Z. A., H. A. Kazem, K. Sopian, M. A. Al-Goul, and H. Alawadhi. 2015. Effect of dust pollutant type on photovoltaic performance. Renewable Sustainable Energy Rev. 41:735–44. doi:10.1016/j.rser.2014.08.068.
  • Davila, A. P., J. Jang, A. K. Gupta, T. Walter, A. Aronson, and R. Bashir. 2007. Microresonator mass sensors for detection of Bacillus anthracis Sterne spores in air and water. Biosens. Bioelectron. 22 (12):3028–35. doi:10.1016/j.bios.2007.01.012.
  • Ding, H., Y. Zhang, H. Sun, and L. Feng. 2016. Analysis of PM2.5 distribution and transfer characteristics in a car cabin. Energy Build. 127:252–8. doi:10.1016/j.enbuild.2016.06.004.
  • Dohn, S., W. Svendsen, A. Boisen, and O. Hansen. 2007. Mass and position determination of attached particles on cantilever based mass sensors. Rev. Sci. Instrum. 78 (10):103303 doi:10.1063/1.2804074.
  • Duan, M., L. Liu, G. Da, E. Géhin, P. V. Nielsen, U. M. Weinreich, B. Lin, Y. Wang, T. Zhang, and W. Sun. 2020. Measuring the administered dose of particles on the facial mucosa of a realistic human model. Indoor Air. 30 (1):108–16. doi:10.1111/ina.12612.
  • El-Shobokshy, M. S., and F. M. Hussein. 1993. Effect of dust with different physical properties on the performance of photovoltaic cells. Sol. Energy 51 (6):505–11. doi:10.1016/0038-092X(93)90135-B.
  • Falcon-Rodriguez, C. I., A. R. Osornio-Vargas, I. Sada-Ovalle, and P. Segura-Medina. 2016. Aeroparticles, composition, and lung diseases. Front. Immunol. 7:3. doi:10.3389/fimmu.2016.00003.
  • Farrance, K., and J. Wilkinson. 1990. Dusting down suspended particles. Build. Serv. 12 (12):45–6.
  • Feulner, M., G. Hagen, A. Müller, A. Schott, C. Zöllner, D. Brüggemann, and R. Moos. 2015. Conductometric sensor for soot mass flow detection in exhausts of internal combustion engines. Sensors (Basel) 15 (11):28796–806. doi:10.3390/s151128796.
  • Frei, M., and F. E. Kruis. 2020. Image-based size analysis of agglomerated and partially sintered particles via convolutional neural networks. Powder Technol. 360:324–36. doi:10.1016/j.powtec.2019.10.020.
  • Garland, J. A., and L. C. Cox. 1982. Deposition of small particles to grass. Atmospheric Environment (1967) 16 (11):2699–702. doi:10.1016/0004-6981(82)90352-3.
  • Gong, L., B. Xu, and Y. Zhu. 2009. Ultrafine particles deposition inside passenger vehicles. Aerosol Sci. Technol. 43 (6):544–53. doi:10.1080/02786820902791901.
  • Grondin, D., A. Westermann, P. Breuil, J. P. Viricelle, and P. Vernoux. 2016. Influence of key parameters on the response of a resistive soot sensor. Sens. Actuators, B 236:1036–43. doi:10.1016/j.snb.2016.05.049.
  • Gupta, A., D. Akin, and R. Bashir. 2004. Single virus particle mass detection using microresonators with nanoscale thickness. Appl. Phys. Lett. 84 (11):1976–8. doi:10.1063/1.1667011.
  • Hagen, G., A. Müller, M. Feulner, A. Schott, C. Zöllner, D. Brüggemann, and R. Moos. 2014. Determination of the soot mass by conductometric soot sensors. Proc. Eng. 87:244–7. doi:10.1016/j.proeng.2014.11.646.
  • Hagen, G., C. Spannbauer, M. Feulner, J. Kita, A. Müller, and R. Moos. 2018. Conductometric soot sensors: Internally caused thermophoresis as an important undesired side effect. Sensors 18 (10):3531. doi:10.3390/s18103531.
  • Hagen, G., M. Feulner, R. Werner, M. Schubert, A. Müller, G. Rieß, D. Brüggemann, and R. Moos. 2016. Capacitive soot sensor for diesel exhausts. Sens. Actuators, B 236:1020–7. doi:10.1016/j.snb.2016.05.006.
  • Hajjam, A., J. C. Wilson, and S. Pourkamali. 2011. Individual air-borne particle mass measurement using high-frequency micromechanical resonators. IEEE Sensors J. 11 (11):2883–90. doi:10.1109/JSEN.2011.2147301.
  • Hao, W.-C., J.-L. Liu, M.-H. Liu, and S.-T. He. 2014. Development of a new surface acoustic wave based PM2.5 monitor. Paper presented at the 2014 Symposium on Piezoelectricity,Acoustic Waves, and Device Applications (SPAWDA), IEEE, Beijing, China. doi:10.1109/SPAWDA.2014.6998524.
  • Herranz, L. E., J. Ball, A. Auvinen, D. Bottomley, A. Dehbi, C. Housiadas, P. Piluso, V. Layly, F. Parozzi, and M. Reeks. 2010. Progress in understanding key aerosol issues. Prog. Nucl. Energy 52 (1):120–7. doi:10.1016/j.pnucene.2009.09.013.
  • Heyder, J. 2004. Deposition of inhaled particles in the human respiratory tract and consequences for regional targeting in respiratory drug delivery. Proc. Am. Thorac. Soc. 1 (4):315–20. doi:10.1513/pats.200409-046TA.
  • Holopainen, R., V. Asikainen, P. Pasanen, and O. Seppänen. 2002. The field comparison of three measuring techniques for evaluation of the surface dust level in ventilation ducts: Evaluation of the surface dust level in ventilation ducts. Indoor Air 12 (1):47–54. doi:10.1034/j.1600-0668.2002.120106.x.
  • Hoppel, W. A. 2002. Surface source function for sea-salt aerosol and aerosol dry deposition to the ocean surface. J. Geophys. Res. 107 (D19):AAC 7-1–17 doi:10.1029/2001JD002014.
  • Hsu, S.-C., G. T. F. Wong, G.-C. Gong, F.-K. Shiah, Y.-T. Huang, S.-J. Kao, F. Tsai, S.-C. Candice Lung, F.-J. Lin, I.-I. Lin, et al. 2010. Sources, solubility, and dry deposition of aerosol trace elements over the East China Sea. Mar. Chem. 120 (1–4):116–27. doi:10.1016/j.marchem.2008.10.003.
  • ISO 15767:2009. 2009. Workplace atmospheres — Controlling and characterizing uncertainty in weighing collected aerosols.
  • Jiang, H., L. Lu, and K. Sun. 2011. Experimental investigation of the impact of airborne dust deposition on the performance of solar photovoltaic (PV) modules. Atmos. Environ. 45 (25):4299–304. doi:10.1016/j.atmosenv.2011.04.084.
  • Jonas, R. F. W., and G. Lindenthal. 2000. Investigation of loss factors of aerosol particles in the sampling systems of a nuclear power plant. Nucl. Eng. Des. 201 (1):107–14. doi:10.1016/S0029-5493(00)00255-7.
  • Kasavan, J., and R. W. Doherty. 2000. Use of fluorescein in aerosol studies. No. ADA384058. U.S. Army Edgewood Chemical Biological Center.
  • Kazem, H. A., M. T. Chaichan, A. H. A. Al-Waeli, and K. Sopian. 2020. A review of dust accumulation and cleaning methods for solar photovoltaic systems. J. Cleaner Prod. 276:123187. doi:10.1016/j.jclepro.2020.123187.
  • Kindap, T., A. Unal, S.-H. Chen, Y. Hu, M. T. Odman, and M. Karaca. 2006. Long-range aerosol transport from Europe to Istanbul, Turkey. Atmos. Environ. 40 (19):3536–47. doi:10.1016/j.atmosenv.2006.01.055.
  • Kondo, Y., L. Sahu, N. Moteki, F. Khan, N. Takegawa, X. Liu, M. Koike, and T. Miyakawa. 2011. Consistency and traceability of black carbon measurements made by laser-induced incandescence, thermal-optical transmittance, and filter-based photo-absorption techniques. Aerosol Sci. Technol. 45 (2):295–312. doi:10.1080/02786826.2010.533215.
  • Kondo, Y., N. Takegawa, H. Matsui, T. Miyakawa, M. Koike, Y. Miyazaki, Y. Kanaya, M. Mochida, M. Kuwata, Y. Morino, et al. 2010. Formation and transport of aerosols in Tokyo in relation to their physical and chemical properties: A review. Journal of the Meteorological Society of Japan 88 (4):597–624. doi:10.2151/jmsj.2010-401.
  • Kort, A., F.-X. Ouf, T. Gelain, J. Malet, R. Lakhmi, P. Breuil, and J.-P. Viricelle. 2021. Quantification of soot deposit on a resistive sensor: Proposal of an experimental calibration protocol. J. Aerosol Sci. 156:105783. doi:10.1016/j.jaerosci.2021.105783.
  • Kort, A., F.-X. Ouf, T. Gelain, J. Malet, R. Lakhmi, P. Breuil, and J.-P. Viricelle. 2019. A resistive soot sensor for mass quantification through a correlation between conductance and soot mass loading. Paper pesented at the EAC 2019, Gothenburg, Sweden.
  • Lai, A. C. K. 2002. Particle deposition indoors: A review. Indoor Air. 12 (4):211–4. doi:10.1046/j.0905-6947.2002.1r159a.x.
  • Lai, A. C. K., and W. W. Nazaroff. 2005. Supermicron particle deposition from turbulent chamber flow onto smooth and rough vertical surfaces. Atmos. Environ. 39 (27):4893–900. doi:10.1016/j.atmosenv.2005.04.036.
  • Lai, A. C. K., M. A. Byrne, and A. J. H. Goddard. 2002. Experimental studies of the effect of rough surfaces and air speed on aerosol deposition in a test chamber. Aerosol Sci. Technol. 36 (10):973–82. doi:10.1080/02786820290092249.
  • Lai, A. C. K., Y. Tian, J. Y. L. Tsoi, and A. R. Ferro. 2017. Experimental study of the effect of shoes on particle resuspension from indoor flooring materials. Build. Environ. 118:251–8. doi:10.1016/j.buildenv.2017.02.024.
  • Laiman, R., C. He, M. Mazaheri, S. Clifford, F. Salimi, L. R. Crilley, M. A. Megat Mokhtar, and L. Morawska. 2014. Characteristics of ultrafine particle sources and deposition rates in primary school classrooms. Atmos. Environ. 94:28–35. doi:10.1016/j.atmosenv.2014.05.013.
  • Landis, G. A., P. Jenkins, J. Flatico, L. Oberle, M. Krasowski, and S. Stevenson. 1996. Development of a Mars dust characterization instrument. Planet. Space Sci. 44 (11):1425–33. doi:10.1016/S0032-0633(96)00042-6.
  • Lavoie, J., G. Marchand, Y. Cloutier, and J. Lavoué. 2011. Validation of the criteria for initiating the cleaning of heating, ventilation, and air-conditioning (HVAC) ductwork under real conditions. J. Occup. Environ. Hyg. 8 (8):467–72. doi:10.1080/15459624.2011.590740.
  • Lavoie, J., G. Marchand, Y. Cloutier, Y. Beaudet, and J. Lavoué. 2010. Studies and research projects: Validation of system cleaning initiation criteria under real conditions. Report. IRSST, Communication Division, Montréal.
  • Lavoie, J., R. Gravel, Y. Cloutier, and A. Bahloul. 2007. Critères de déclenchement du nettoyage des systèmes de chauffage, de ventilation et de conditionnement d’air d’édifices non industriels. Études et recherches No. R-525, Substances chimiques et agents biologiques. Institut de recherche Robert-Sauvé en santé et en sécurité du travail (IRSST), Montréal.
  • Licina, D., and W. W. Nazaroff. 2018. Clothing as a transport vector for airborne particles: Chamber study. Indoor Air. 28 (3):404–14. doi:10.1111/ina.12452.
  • Lieberman, A., and J. Rosinski. 1962. Behavior of an aerosol cloud in a plastic chamber. J. Colloid Sci. 17 (9):814–22. doi:10.1016/0095-8522(62)90061-2.
  • Litvak, A., A. J. Gadgil, and W. J. Fisk. 2000. Hygroscopic fine mode particle deposition on electronic circuits and resulting degradation of circuit performance: an experimental study: Hygroscopic fine mode particle deposition on electronic circuits and resulting degradation of circuit performance. Indoor Air. 10 (1):47–56. doi:10.1034/j.1600-0668.2000.010001047.x.
  • Liu, B., X. Chen, H. Cai, M. Mohammad Ali, X. Tian, L. Tao, Y. Yang, and T. Ren. 2016. Surface acoustic wave devices for sensor applications. J. Semicond. 37 (2):021001. doi:10.1088/1674-4926/37/2/021001.
  • Mani, M., and R. Pillai. 2010. Impact of dust on solar photovoltaic (PV) performance: Research status, challenges and recommendations. Renewable Sustainable Energy Rev. 14 (9):3124–31. doi:10.1016/j.rser.2010.07.065.
  • Maro, D., O. Connan, J. P. Flori, D. Hébert, P. Mestayer, F. Olive, J. M. Rosant, M. Rozet, J. F. Sini, and L. Solier. 2014. Aerosol dry deposition in the urban environment: Assessment of deposition velocity on building facades. J. Aerosol Sci. 69:113–31. doi:10.1016/j.jaerosci.2013.12.001.
  • Matsuda, K., Y. Fujimura, K. Hayashi, A. Takahashi, and K. Nakaya. 2010. Deposition velocity of PM2.5 sulfate in the summer above a deciduous forest in central Japan. Atmos. Environ. 44 (36):4582–7. doi:10.1016/j.atmosenv.2010.08.015.
  • McCready, D. I. 1986. Wind tunnel modeling of small particle deposition. Aerosol Sci. Technol. 5 (3):301–12. doi:10.1080/02786828608959095.
  • McFarland, A. R., H. Gong, A. Muyshondt, W. B. Wente, and N. K. Anand. 1997. Aerosol deposition in bends with turbulent flow. Environ. Sci. Technol. 31 (12):3371–7. doi:10.1021/es960975c.
  • Menant, N. 2016. Etude des mécanismes de contamination particulaire et des moyens de détection: Proposition et evaluation de solutions innovantes pour la détection en temps-réel de la sédimentation des particules sur les surfaces critiques. PhD diss., Université de Montpellier.
  • Menant, N., D. Faye, F. Bourcier, P. Nouet, L. Latorre, X. Lafontan, and D. Lellouchi. 2015. New development for particle deposition monitoring during space instrument integration in cleanroom. Paper presented at the ISMSE 2015, Pau.
  • Miller, S. L., W. W. Nazaroff, J. L. Jimenez, A. Boerstra, G. Buonanno, S. J. Dancer, J. Kurnitski, L. C. Marr, L. Morawska, and C. Noakes. 2021. Transmission of SARS‐CoV‐2 by inhalation of respiratory aerosol in the Skagit Valley Chorale superspreading event. Indoor Air 31 (2):314–23. doi:10.1111/ina.12751.
  • Morales-Baquero, R., and C. Pérez-Martínez. 2016. Saharan versus local influence on atmospheric aerosol deposition in the southern Iberian Peninsula: Significance for N and P inputs: Saharan Versus Local Aerosol Deposition. Global Biogeochem. Cycles 30 (3):501–13. doi:10.1002/2015GB005254.
  • Mosley, R. B., D. J. Greenwell, L. E. Sparks, Z. Guo, W. G. Tucker, R. Fortmann, and C. Whitfield. 2001. Penetration of ambient fine particles into the indoor environment. Aerosol Sci. Technol. 34 (1):127–36. doi:10.1080/02786820117449.
  • Newman, S. P., J. E. Agnew, D. Pavia, and S. W. Clarke. 1982. Inhaled aerosols: Lung deposition and clinical applications. Clin. Phys. Physiol. Meas. 3 (1):1–20. doi:10.1088/0143-0815/3/1/001.
  • Nugaeva, N., K. Y. Gfeller, N. Backmann, M. Düggelin, H. P. Lang, H.-J. Güntherodt, and M. Hegner. 2007. An antibody-sensitized microfabricated cantilever for the growth detection of Aspergillus niger spores. Microsc. Microanal. 13 (1):13–7. doi:10.1017/S1431927607070067.
  • Nygren, O. 2006. Wipe sampling as a tool for monitoring aerosol deposition in workplaces. J. Environ. Monit. 8 (1):49–52. doi:10.1039/B511509B.
  • Okazaki, K., and K. Willeke. 1987. Transmission and deposition behavior of aerosols in sampling inlets. Aerosol Sci. Technol. 7 (3):275–83. doi:10.1080/02786828708959164.
  • Paprotny, I., F. Doering, P. A. Solomon, R. M. White, and L. A. Gundel. 2013. Microfabricated air-microfluidic sensor for personal monitoring of airborne particulate matter: Design, fabrication, and experimental results. Sens. Actuators, A. 201:506–16. doi:10.1016/j.sna.2012.12.026.
  • Park, K., N. Kim, D. T. Morisette, N. R. Aluru, and R. Bashir. 2012. Resonant MEMS mass sensors for measurement of microdroplet evaporation. J. Microelectromech. Syst. 21 (3):702–11. doi:10.1109/JMEMS.2012.2189359.
  • Peillon, S., G. Dougniaux, M. Payet, E. Bernard, G. Pieters, S. Feuillastre, S. Garcia-Argote, F. Gensdarmes, C. Arnas, F. Miserque, et al. 2020. Dust sampling in WEST and tritium retention in tokamak-relevant tungsten particles. Nuclear Materials and Energy 24:100781. doi:10.1016/j.nme.2020.100781.
  • Petroff, A., A. Mailliat, M. Amielh, and F. Anselmet. 2008. Aerosol dry deposition on vegetative canopies. Part I: Review of present knowledge. Atmos. Environ. 42 (16):3625–53. doi:10.1016/j.atmosenv.2007.09.043.
  • Phillips, S. 2004. Ammonia flux and dry deposition velocity from near-surface concentration gradient measurements over a grass surface in North Carolina. Atmos. Environ. 38 (21):3469–80. doi:10.1016/j.atmosenv.2004.02.054.
  • Prévost, C. 1997. Etude d’un dispositif de comptage en continu d’un aérosol fluorescent. Master. thesis., No. CEA-R-5763). CEA.
  • Pui, D. Y. H., F. Romay-Novas, and B. Y. H. Liu. 1987. Experimental study of particle deposition in bends of circular cross section. Aerosol Sci. Technol. 7 (3):301–15. doi:10.1080/02786828708959166.
  • Reche, I., G. D’Orta, N. Mladenov, D. M. Winget, and C. A. Suttle. 2018. Deposition rates of viruses and bacteria above the atmospheric boundary layer. Isme J. 12 (4):1154–62. doi:10.1038/s41396-017-0042-4.
  • Reynaud, A., M. Leblanc, S. Zinola, P. Breuil, and J.-P. Viricelle. 2019. Responses of a resistive soot sensor to different mono-disperse soot aerosols. Sensors 19 (3):705. doi:10.3390/s19030705.
  • Roed, J. 1985. Dry deposition on urban surfaces. No. 87-550-1069–5. Risø National Laboratory, Denmark.
  • Rondeau, A. 2015. Study of the aeraulic particle resuspension applied to the dust issue in the future ITER tokamak. PhD diss., Université Paris-Saclay.
  • Roupsard, P. 2013. Etude phénoménologique du dépôt sec d’aérosols en milieu urbain: Influence des propriétés des surfaces, de la turbulence et des conditions météorologiques. PhD diss., INSA de Rouen.
  • Roupsard, P., M. Amielh, D. Maro, A. Coppalle, H. Branger, O. Connan, P. Laguionie, D. Hébert, and M. Talbaut. 2013. Measurement in a wind tunnel of dry deposition velocities of submicron aerosol with associated turbulence onto rough and smooth urban surfaces. J. Aerosol Sci. 55:12–24. doi:10.1016/j.jaerosci.2012.07.006.
  • SAC. 2018. PDM. Accessed July 28, 2020. http://particle-deposition.com/.
  • Saidan, M., A. G. Albaali, E. Alasis, and J. K. Kaldellis. 2016. Experimental study on the effect of dust deposition on solar photovoltaic panels in desert environment. Renewable Energy 92:499–505. doi:10.1016/j.renene.2016.02.031.
  • Sato, S., D.-R. Chen, and D. Y. H. Pui. 2002. Particle transport at low pressure: Particle deposition in a tube with an abrupt contraction. J. Aerosol Sci. 33 (4):659–71. doi:10.1016/S0021-8502(01)00198-7.
  • Schlesinger, R. B. 1985. Comparative deposition of inhaled aerosols in experimental animals and humans: A review. J. Toxicol. Environ. Health 15 (2):197–214. doi:10.1080/15287398509530647.
  • Schmid, S., M. Kurek, J. Q. Adolphsen, and A. Boisen. 2013. Real-time single airborne nanoparticle detection with nanomechanical resonant filter-fiber. Sci. Rep. 3 (1):1288 doi:10.1038/srep01288.
  • Schneider, T., O. H. Petersen, J. Kildeso, N. P. Kloch, and T. Lobner. 1996. Design and calibration of a simple instrument for measuring dust on surfaces in the indoor environment. Indoor Air 6 (3):204–10. doi:10.1111/j.1600-0668.1996.t01-1-00007.x.
  • Shaughnessy, R., and H. Vu. 2012. Particle loadings and resuspension related to floor coverings in chamber and in occupied school environments. Atmos. Environ. 55:515–24. doi:10.1016/j.atmosenv.2012.04.008.
  • Sippola, M. R., and W. W. Nazaroff. 2004. Experiments measuring particle deposition from fully developed turbulent flow in ventilation ducts. Aerosol Sci. Technol. 38 (9):914–25. doi:10.1080/027868290507213.
  • Slinn, S. A., and W. G. N. Slinn. 1980. Predictions for particle deposition on natural waters. Atmospheric Environment (1967) 14 (9):1013–6. doi:10.1016/0004-6981(80)90032-3.
  • Smolík, J., M. Lazaridis, P. Moravec, J. Schwarz, S. K. Zaripov, and V. Ždímal. 2005. Indoor Aerosol Particle Deposition in an Empty Office. Water. Air. Soil Pollut. 165 (1–4):301–12. doi:10.1007/s11270-005-7146-6.
  • Sow, M., Y. Leblois, and F. Gensdarmes. 2019. Experimental study of aerosol release following liquid leaks of fission products concentrates simulants. Nucl. Eng. Des. 341:46–55. doi:10.1016/j.nucengdes.2018.09.034.
  • Soysal, U., E. Géhin, E. Algré, B. Berthelot, G. Da, and E. Robine. 2017. Aerosol mass concentration measurements: Recent advancements of real-time nano/micro systems. J. Aerosol Sci. 114:42–54. doi:10.1016/j.jaerosci.2017.09.008.
  • Stenger, J. B., and R. A. Bajura. 1982. Deposition in sampling tubes. Technical Report No. DOE/MC/11284-T12). Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV.
  • Taheri, A., A. B. Khoshnevis, and E. Lakzian. 2020. The effects of wall curvature and adverse pressure gradient on air ducts in HVAC systems using turbulent entropy generation analysis. Int. J. Refrig. 113:21–30. doi:10.1016/j.ijrefrig.2020.01.014.
  • Technology of Sense. 2018. APMON. Accessed July 28, 2020. https://www.technologyofsense.com/products/apmon/.
  • Thatcher, T. L., A. C. K. Lai, R. Moreno-Jackson, R. G. Sextro, and W. W. Nazaroff. 2002. Effects of room furnishings and air speed on particle deposition rates indoors. Atmos. Environ. 36 (11):1811–9. doi:10.1016/S1352-2310(02)00157-7.
  • Thomas, S., M. Cole, F. H. Villa-López, and J. W. Gardner. 2016. High frequency surface acoustic wave resonator-based sensor for particulate matter detection. Sens. Actuators, A 244:138–45. doi:10.1016/j.sna.2016.04.003.
  • Tovena Pecault, I., P. Godefroy, and L. Escoubas. 2017. Qualification testing of an innovative system for monitoring particle contamination fallout. Sens. Actuators, A. 253:181–7. doi:10.1016/j.sna.2016.12.002.
  • Uematsu, M., R. A. Duce, J. M. Prospero, L. Chen, J. T. Merrill, and R. L. McDonald. 1983. Transport of mineral aerosol from Asia over the North Pacific Ocean. J. Geophys. Res. 88 (C9):5343–52. doi:10.1029/JC088iC09p05343.
  • Vette, A. F., A. W. Rea, P. A. Lawless, C. E. Rodes, G. Evans, V. R. Highsmith, and L. Sheldon. 2001. Characterization of Indoor-Outdoor Aerosol Concentration Relationships during the Fresno PM Exposure Studies. Aerosol Sci. Technol. 34 (1):118–26. doi:10.1080/02786820117903.
  • Volken, M., and T. Schumann. 1993. A Critical review of below-cloud aerosol scavenging results on Mt. Rigi. Water. Air. Soil Pollut. 68 (1–2):15–28. doi:10.1007/BF00479390.
  • Wagner, J., and D. Leith. 2001. Passive aerosol sampler. Part II: Wind tunnel experiments. Aerosol Sci. Technol. 34 (2):193–201. doi:10.1080/027868201300034826.
  • Wasisto, H. S., S. Merzsch, A. Stranz, A. Waag, E. Uhde, T. Salthammer, and E. Peiner. 2013. Silicon resonant nanopillar sensors for airborne titanium dioxide engineered nanoparticle mass detection. Sens. Actuators, B 189:146–56. doi:10.1016/j.snb.2013.02.053.
  • Whyte, W., and T. Eaton. 2016. Deposition velocities of airborne microbe- carrying particles. Eur. J. Parenteral Pharm. Sci. 21 (2):45–9.
  • Wilson, W. E., J. C. Chow, C. Claiborn, W. Fusheng, J. Engelbrecht, and J. G. Watson. 2002. Monitoring of particulate matter outdoors. Chemosphere 49 (9):1009–43. doi:10.1016/S0045-6535(02)00270-9.
  • Wu, Y.-L., C. I. Davidson, and A. G. Russell. 1992. Controlled wind tunnel experiments for particle bounceoff and resuspension. Aerosol Sci. Technol. 17 (4):245–62. doi:10.1080/02786829208959574.
  • Wu, Z., and J. B. Young. 2012. The deposition of small particles from a turbulent air flow in a curved duct. Int. J. Multiphase Flow 44:34–47. doi:10.1016/j.ijmultiphaseflow.2012.03.011.
  • XCAM. 2016. PFO 1000 MONITOR. Accessed July 28, 2020. http://www.xcam.co.uk/pfo-1000-particle-fall-out-monitor.
  • Xu, M., M. Nematollahi, R. G. Sextro, A. J. Gadgil, and W. W. Nazaroff. 1994. Deposition of tobacco smoke particles in a low ventilation room. Aerosol Sci. Technol. 20 (2):194–206. doi:10.1080/02786829408959676.
  • Yang, Y. T., C. Callegari, X. L. Feng, K. L. Ekinci, and M. L. Roukes. 2006. Zeptogram-scale nanomechanical mass sensing. Nano Lett. 6 (4):583–6. doi:10.1021/nl052134m.
  • Zielinski, A. T., M. Kalberer, R. L. Jones, A. Prasad, and A. A. Seshia. 2016. Particulate mass sensing with piezoelectric bulk acoustic mode resonators. Paper presented at the 2016 IEEE International Frequency Control Symposium (IFCS), IEEE, New Orleans, LA. doi:10.1109/FCS.2016.7563576.
  • Zuraimi, M. S. 2010. Is ventilation duct cleaning useful? A review of the scientific evidence: Ventilation duct cleaning review. Indoor Air. 20 (6):445–57. doi:10.1111/j.1600-0668.2010.00672.x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.