567
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Control of the size of nanoparticles by spark discharge with an atomizer and a bubbler

, ORCID Icon, ORCID Icon, , ORCID Icon &
Pages 405-412 | Received 13 Aug 2021, Accepted 09 Jan 2022, Published online: 02 Feb 2022

References

  • Agnihotri, S., S. Mukherji, and S. Mukherji. 2014. Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Adv. 4 (8):3974–83. doi:10.1039/C3RA44507K.
  • Ahmat, L., I. Ahmed, and A. Nadeem. 2014. Infrared laser induced plasma diagnostics of silver target. Phys. Plasmas 21 (9):093501. doi:10.1063/1.4894221.
  • Ashraf, M. A., W. Peng, Y. Zare, and K. Y. Rhee. 2018. Effects of size and aggregation/agglomeration of nanoparticles on the interfacial/interphase properties and tensile strength of polymer nanocomposites. Nanoscale Res. Lett. 13 (1):214.
  • Bae, Y., P. V. Pikhitsa, H. Cho, and M. Choi. 2017. Multifurcation assembly of charged aerosols and its application to 3D structured gas sensors. Adv. Mater. 29 (2):1604159. doi:10.1002/adma.201604159.
  • Bai, Y., H. Yu, Z. Li, R. Amal, G. Q. Lu, and L. Wang. 2012. In situ growth of a ZnO nanowire network within a TiO2 nanoparticle film for enhanced dye-sensitized solar cell performance. Adv. Mater. 24 (43):5850–6. doi:10.1002/adma.201201992.
  • Danis, A. M., I. Namer, and N. P. Cernansky. 1988. Droplet size and equivalence ratio effects on spark ignition of monodisperse N-heptane and methanol sprays. Combust. Flame 74 (3):285–94. doi:10.1016/0010-2180(88)90074-0.
  • Deng, H., Z. He, J. Ma, Y. Xu, J. Liu, and R. Guo. 2010. Initiation and propagation of discharge in liquid droplets: Effect of droplet sizes. IEEE Trans. Plasma Sci. 38 (12):3282–8. doi:10.1109/TPS.2010.2051687.
  • Hallberg, R. T., L. Ludvigsson, C. Preger, B. O. Meuller, K. A. Dick, and M. E. Messing. 2018. Hydrogen-assisted spark discharge generated metal nanoparticles to prevent oxide formation. Aerosol Sci. Technol. 52 (3):347–58. doi:10.1080/02786826.2017.1411580.
  • Han, K., W. Kim, J. Yu, J. Lee, H. Lee, C. Gyu Woo, and M. Choi. 2012. A study of pin-to-plate type spark discharge generator for producing unagglomerated nanoaerosols. J. Aerosol Sci. 52:80–8. doi:10.1016/j.jaerosci.2012.05.002.
  • Ichihara, F., K. Lee, M. Sakamoto, H. Higashi, and T. Seto. 2020. Aerosolization of colloidal nanoparticles by a residual-free atomizer. Aerosol Sci. Technol. 54 (10):1223–30. doi:10.1080/02786826.2020.1770197.
  • Janda, M., V. Martišovitš, K. Hensel, and Z. Machala. 2016. Generation of antimicrobial NOx by atmospheric air transient spark discharge. Plasma Chem. Plasma Process. 36 (3):767–81. doi:10.1007/s11090-016-9694-5.
  • Ma, Q., H. Zhang, W. Liu, J. Ge, J. Wu, S. Wang, and P. Wang. 2016. Surface-enhanced Raman scattering substrate based on cysteamine-modified gold nanoparticle aggregation for highly sensitive pentachlorophenol detection. RSC Adv. 6 (88):85285–92. doi:10.1039/C6RA15774B.
  • Matricardi, C., C. Hanske, J. L. Garcia-Pomar, J. Langer, A. Mihi, and L. M. Liz-Marzán. 2018. Gold nanoparticle plasmonic superlattices as surface-enhanced Raman spectroscopy substrates. ACS Nano 12 (8):8531–9.
  • Messing, M. E., R. Westerström, B. O. Meuller, S. Blomberg, J. Gustafson, J. N. Andersen, E. Lundgren, R. van Rijn, O. Balmes, H. Bluhm, et al. 2010. Generation of Pd model catalyst nanoparticles by spark discharge. J. Phys. Chem. C 114 (20):9257–63. doi:10.1021/jp101390a.
  • Mylnikov, D., A. Efimov, and V. Ivanov. 2019. Measuring and optimization of energy transfer to the interelectrode gaps during the synthesis of nanoparticles in a spark discharge. Aerosol Sci. Technol. 53 (12):1393–403. doi:10.1080/02786826.2019.1665165.
  • Oberdisse, J. 2006. Aggregation of colloidal nanoparticles in polymer matrices. Soft Matter 2 (1):29–36. doi:10.1039/b511959f.
  • Park, J. Y., P. H. McMurry, and K. Park. 2012. Production of residue-free nanoparticles by atomization of aqueous solutions. Aerosol Sci. Technol. 46 (3):354–60. doi:10.1080/02786826.2011.631614.
  • Stabile, L., C. V. Trassierra, G. Dell’Agli, and G. Buonanno. 2013. Ultrafine particle generation through atomization technique: The influence of the solution. Aerosol Air Qual. Res. 13 (6):1667–77. doi:10.4209/aaqr.2013.03.0085.
  • Tabrizi, N. S., M. Ullmann, V. A. Vons, U. Lafont, and A. Schmidt-Ott. 2009. Generation of nanoparticles by spark discharge. J. Nanopart. Res. 11 (2):315–32. doi:10.1007/s11051-008-9407-y.
  • Tabrizi, N. S., Q. Xu, N. M. van der Pers, and A. Schmidt-Ott. 2010. Generation of mixed metallic nanoparticles from immiscible metals by spark discharge. J. Nanopart. Res. 12 (1):247–59. doi:10.1007/s11051-009-9603-4.
  • Tardiveau, P., and E. Marode. 2003. Point-to-plane discharge dynamics in the presence of dielectric droplets. J. Phys. D: Appl. Phys. 36 (10):1204–11. doi:10.1088/0022-3727/36/10/309.
  • Tewari, S. V., R. J. Kshirsagar, A. Roy, R. Sarathi, A. Sharma, and K. C. Mittal. 2014. Optical emission spectroscopy study on flashover along insulator surface due to particle contamination. Laser Part. Beams 32 (4):681–9. doi:10.1017/S0263034614000718.
  • Wilhelm, S., A. J. Tavares, Q. Dai, S. Ohta, J. Audet, H. F. Dvorak, and W. C. W. Chan. 2016. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 1 (5):16014. doi:10.1038/natrevmats.2016.14.
  • Wu, C.-Y., and P. Biswas. 1998. Particle growth by condensation in a system with limited vapor. Aerosol Sci. Technol. 28 (1):1–20. doi:10.1080/02786829808965508.
  • Zook, J. M., R. I. MacCuspie, L. E. Locascio, M. D. Halter, and J. T. Elliott. 2011. Stable nanoparticle aggregates/agglomerates of different sizes and the effect of their size on hemolytic cytotoxicity. Nanotoxicology 5 (4):517–30.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.