945
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Effect of coherent structures on particle transport and deposition from a cough

ORCID Icon & ORCID Icon
Pages 425-433 | Received 26 Oct 2021, Accepted 01 Feb 2022, Published online: 16 Mar 2022

References

  • Bahl, P., C. Doolan, C. D. Silva, A. A. Chughtai, L. Bourouiba, and C. R. MacIntyre. 2020. Airborne or droplet precautions for health workers treating coronavirus disease 2019? J. Infect. Dis. doi:10.1093/infdis/jiaa189.
  • Balachandar, S., S. Zaleski, A. Soldati, G. Ahmadi, and L. Bourouiba. 2020. Host-to-host airborne transmission as a multiphase flow problem for science-based social distance guidelines. Int. J. Multiph. Flow. 132:103439.
  • Berlanga, F. A., L. Liu, P. V. Nielsen, R. L. Jensen, A. Costa, I. Olmedo, and M. R. de Adana. 2020. Influence of the geometry of the airways on the characterization of exhalation flows. comparison between two different airway complexity levels performing two different breathing functions. Sustainable Cities and Society 53:101874. doi:10.1016/j.scs.2019.101874.
  • Berlanga, F., I. Olmedo, and M. R. D. Adana. 2017. Experimental analysis of the air velocity and contaminant dispersion of human exhalation flows. Indoor Air. 27 (4):803–15. doi:10.1111/ina.12357.
  • Boersma, B. J., G. Brethouwer, and F. T. Nieuwstadt. 1998. A numerical investigation on the effect of the inflow conditions on the self-similar region of a round jet. Physics of Fluids 10 (4):899–909. doi:10.1063/1.869626.
  • Bourouiba, L. 2021. The fluid dynamics of disease transmission. Annu. Rev. Fluid Mech. 53 (1):473–508. doi:10.1146/annurev-fluid-060220-113712.
  • Bourouiba, L., E. Dehandschoewercker, and J. W. Bush. 2014. Violent expiratory events: on coughing and sneezing. J. Fluid Mech. 745:537–63. doi:10.1017/jfm.2014.88.
  • Casciola, C., P. Gualtieri, F. Picano, G. Sardina, and G. Troiani. 2010. Dynamics of inertial particles in free jets. Phys. Scr. 2010 (T142):014001.
  • Chao, C. Y. H., M. P. Wan, L. Morawska, G. R. Johnson, Z. D. Ristovski, M. Hargreaves, K. Mengersen, S. Corbett, Y. Li, X. Xie, et al. 2009. Characterization of expiration air jets and droplet size distributions immediately at the mouth opening. J Aerosol Sci . 40 (2):122–33. doi:10.1016/j.jaerosci.2008.10.003.
  • Davila, J., and J. C. Hunt. 2001. Settling of small particles near vortices and in turbulence. J. Fluid Mech. 440:117–45. doi:10.1017/S0022112001004694.
  • Duan, M., L. Liu, G. Da, E. Géhin, P. V. Nielsen, U. M. Weinreich, B. Lin, Y. Wang, T. Zhang, W. Sun, et al. 2020. Measuring the administered dose of particles on the facial mucosa of a realistic human model. Indoor Air. 30 (1):108–16. doi:10.1111/ina.12612.
  • Dudalski, N., A. Mohamed, S. Mubareka, R. Bi, C. Zhang, and E. Savory. 2020. Experimental investigation of far-field human cough airflows from healthy and influenza-infected subjects. Indoor Air. 30 (5):966–77. doi:10.1111/ina.12680.
  • Duguid, J. 1946. The size and the duration of air-carriage of respiratory droplets and droplet-nuclei. Epidemiol. Infect. 44 (6):471–9. doi:10.1017/S0022172400019288.
  • Eames, I., and M. Gilbertson. 2004. The settling and dispersion of small dense particles by spherical vortices. J. Fluid Mech. 498:183–203. doi:10.1017/S0022112003006888.
  • Eaton, J. K., and J. Fessler. 1994. Preferential concentration of particles by turbulence. Int. J. Multiphase Flow 20:169–209. doi:10.1016/0301-9322(94)90072-8.
  • Feng, L., S. Yao, H. Sun, N. Jiang, and J. Liu. 2015. Tr-piv measurement of exhaled flow using a breathing thermal manikin. Build. Environ. 94:683–93. doi:10.1016/j.buildenv.2015.11.001.
  • Ge, H., L. Chen, C. Xu, and X. Cui. 2021. Large-eddy simulation of droplet-laden cough jets with a realistic manikin model. Indoor Built Environ. doi:10.1177/1420326X211032247.
  • George, W. K. 1989. The self-preservation of turbulent flows and its relation to initial conditions and coherent structures. Advances in Turbulence 3973.
  • Gupta, J. K., C.-H. Lin, and Q. Chen. 2009. Flow dynamics and characterization of a cough. Indoor Air. 19 (6):517–25. doi:10.1111/j.1600-0668.2009.00619.x.
  • Han, M., R. Ooka, H. Kikumoto, W. Oh, Y. Bu, and S. Hu. 2021. Measurements of exhaled airflow velocity through human coughs using particle image velocimetry. Build. Environ. 202:108020. doi:10.1016/j.buildenv.2021.108020.
  • Hegland, K. W., M. S. Troche, and P. W. Davenport. 2013. Cough expired volume and airflow rates during sequential induced cough. Front. Physiol. 4:167. doi:10.3389/fphys.2013.00167.
  • Hernan, M. A., and J. Jimenez. 1982. Computer analysis of a high-speed film of the plane turbulent mixing layer. J. Fluid Mech. 119:323–45. doi:10.1017/S0022112082001372.
  • Huang, L.-S., and C.-M. Ho. 1990. Small-scale transition in a plane mixing layer. J. Fluid Mech. 210:475–500. doi:10.1017/S0022112090001379.
  • Hunt, J., R. Delfos, I. Eames, and R. J. Perkins. 2007. Vortices, complex flows and inertial particles. Flow. Turbulence Combust. 79 (3):207–34. doi:10.1007/s10494-007-9096-0.
  • Jimenez, J. 1983. A spanwise structure in the plane shear layer. J. Fluid Mech. 132:319–36. doi:10.1017/S0022112083001639.
  • Kwon, S.-B., J. Park, J. Jang, Y. Cho, D.-S. Park, C. Kim, G.-N. Bae, and A. Jang. 2012. Study on the initial velocity distribution of exhaled air from coughing and speaking. Chemosphere 87 (11):1260–4. doi:10.1016/j.chemosphere.2012.01.032.
  • Lazaro, B., and J. Lasheras. 1989. Particle dispersion in a turbulent, plane, free shear layer. Phys. Fluids A: Fluid Dyn. 1 (6):1035–44. doi:10.1063/1.857394.
  • Liu, S., and A. Novoselac. 2014. Transport of airborne particles from an unobstructed cough jet. Aerosol Sci. Technol. 48 (11):1183–94. doi:10.1080/02786826.2014.968655.
  • Perkins, R., S. Ghosh, and J. Phillips. 1991. The interaction between particles and coherent structures in a plane turbulent jet. In Advances in Turbulence 3, eds. A. V. Johansson and P. Henrik Alfredsson, 93–100. Berlin: Springer.
  • Picano, F., G. Sardina, P. Gualtieri, and C. Casciola. 2010. Anomalous memory effects on transport of inertial particles in turbulent jets. Phys. Fluids 22 (5):051705. doi:10.1063/1.3432439.
  • Prasanna Simha, P., and P. S. Mohan Rao. 2020. Universal trends in human cough airflows at large distances. Phys Fluids (1994) 32 (8):081905. doi:10.1063/5.0021666.
  • Qian, H., Y. Li, P. V. Nielsen, C.-E. Hyldgaard, T. W. Wong, and A. Chwang. 2006. Dispersion of exhaled droplet nuclei in a two-bed hospital ward with three different ventilation systems. Indoor Air. 16 (2):111–28. doi:10.1111/j.1600-0668.2005.00407.x.
  • Redrow, J., S. Mao, I. Celik, J. A. Posada, and Z-g Feng. 2011. Modeling the evaporation and dispersion of airborne sputum droplets expelled from a human cough. Build. Environ. 46 (10):2042–51. doi:10.1016/j.buildenv.2011.04.011.
  • Savory, E., W. E. Lin, K. Blackman, M. C. Roberto, L. R. Cuthbertson, J. A. Scott, and S. Mubareka. 2014. Western cold and flu (wecof) aerosol study–preliminary results. BMC Res. Notes. 7 (1):1–11. doi:10.1186/1756-0500-7-563.
  • Sun, W., and J. Ji. 2007. Transport of droplets expelled by coughing in ventilated rooms. Indoor Built Environ. 16 (6):493–504. doi:10.1177/1420326X07084290.
  • Tang, J. W., T. J. Liebner, B. A. Craven, and G. S. Settles. 2009. A schlieren optical study of the human cough with and without wearing masks for aerosol infection control. J. R Soc. Interface 6 (suppl_6):S727–S736. doi:10.1098/rsif.2009.0295.focus.
  • Tang, J. W., A. Nicolle, J. Pantelic, G. C. Koh, L. D. Wang, M. Amin, C. A. Klettner, D. K. W. Cheong, C. Sekhar, K. W. Tham, et al. 2012. Airflow dynamics of coughing in healthy human volunteers by shadowgraph imaging: An aid to aerosol infection control. PLoS One. 7 (4):e34818. doi:10.1371/journal.pone.0034818.
  • Tang, L., F. Wen, Y. Yang, C. Crowe, J. Chung, and T. Troutt. 1992. Self-organizing particle dispersion mechanism in a plane wake. Phys. Fluids A: Fluid Dyn. 4 (10):2244–51. doi:10.1063/1.858465.
  • Thacher, E., T. Carlson, J. Castellini, M. D. Sohn, E. Variano, and S. A. Mäkiharju. 2021. Droplet and particle methods to investigate turbulent particle laden jets. Aerosol Sci. Technol. 55 (12):1359–29. http://doi.org/10.1080/02786826.2021.1959019. doi:10.1080/02786826.2021.1959019.
  • VanSciver, M., S. Miller, and J. Hertzberg. 2011. Particle image velocimetry of human cough. Aerosol Sci. Technol. 45 (3):415–22. doi:10.1080/02786826.2010.542785.
  • Villafruela, J., I. Olmedo, and J. San José. 2016. Influence of human breathing modes on airborne cross infection risk. Build. Environ. 106:340–51. doi:10.1016/j.buildenv.2016.07.005.
  • Wei, J., and Y. Li. 2015. Enhanced spread of expiratory droplets by turbulence in a cough jet. Build. Environ. 93:86–96. doi:10.1016/j.buildenv.2015.06.018.
  • Wei, J., and Y. Li. 2017. Human cough as a two-stage jet and its role in particle transport. PloS One. 12 (1):e0169235.
  • Wen, F., N. Kamalu, J. Chung, C. Crowe, and T. Troutt. 1992. Particle dispersion by vortex structures in plane mixing layers. Journal of Fluids Engineering 114 (4):657–66. doi:10.1115/1.2910082.
  • Xu, C., P. Nielsen, G. Gong, R. Jensen, and L. Liu. 2015. Influence of air stability and metabolic rate on exhaled flow. Indoor Air. 25 (2):198–209. doi:10.1111/ina.12135.
  • Yang, L., X. Li, Y. Yan, and J. Tu. 2018. Effects of cough-jet on airflow and contaminant transport in an airliner cabin section. The Journal of Computational Multiphase Flows 10 (2):72–82. doi:10.1177/1757482X17746920.
  • Yang, X., N. Thomas, and L. Guo. 2000. Particle dispersion in organized vortex structures within turbulent free shear flows. Chem. Eng. Sci. 55 (7):1305–24. doi:10.1016/S0009-2509(99)00401-7.
  • Zaman, K. 1996. Axis switching and spreading of an asymmetric jet: The role of coherent structure dynamics. J. Fluid Mech. 316:1–27. doi:10.1017/S0022112096000420.
  • Zhu, S., S. Kato, and J.-H. Yang. 2006. Study on transport characteristics of saliva droplets produced by coughing in a calm indoor environment. Build. Environ. 41 (12):1691–702. doi:10.1016/j.buildenv.2005.06.024.