605
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

On the variation of fricative airflow dynamics with vocal tract geometry and speech loudness

ORCID Icon, ORCID Icon, ORCID Icon, , , & ORCID Icon show all
Pages 446-460 | Received 30 Mar 2021, Accepted 10 Feb 2022, Published online: 01 Apr 2022

References

  • Abkarian, M., S. Mendez, N. Xue, F. Yang, and H. A. Stone. 2020. Speech can produce jet-like transport relevant to asymptomatic spreading of virus. Proc. Natl. Acad. Sci. USA. 117 (41):25237–45. doi:10.1073/pnas.2012156117.
  • Ahmed, T., H. E. Wendling, A. A. Mofakham, G. Ahmadi, B. T. Helenbrook, A. R. Ferro, D. M. Brown, and B. D. Erath. 2021. Variability in expiratory trajectory angles during consonant production by one human subject and from a physical mouth model: Application to respiratory droplet emission. Indoor Air. 31 (6):1896–912. doi:10.1111/ina.12908.
  • Anderson, P., S. Green, and S. Fels. 2009. Modeling fluid flow in the airway using CFD with a focus on fricative acoustics. Proc. 1st. 146–54.
  • Asadi, S., A. S. Wexler, C. D. Cappa, S. Barreda, N. M. Bouvier, and W. D. Ristenpart. 2019. Aerosol emission and superemission during human speech increase with voice loudness. Sci. Rep. 9 (1):1–10. doi:10.1038/s41598-019-38808-z.
  • Asadi, S., A. S. Wexler, C. D. Cappa, S. Barreda, N. M. Bouvier, and W. D. Ristenpart. 2020. Effect of voicing and articulation manner on aerosol particle emission during human speech. PLoS One. 15 (1):e0227699.
  • Bianchini, A., F. Balduzzi, P. Bachant, G. Ferrara, and L. Ferrari. 2017. Effectiveness of two-dimensional CFD simulations for Darrieus VAWTs: a combined numerical and experimental assessment. Energy Convers. Manage. 136:318–28. doi:10.1016/j.enconman.2017.01.026.
  • Bourouiba, L. 2020. Turbulent gas clouds and respiratory pathogen emissions: Potential implications for reducing transmission of COVID-19. JAMA 323 (18):1837–8. doi:10.1001/jama.2020.4756.
  • Bourouiba, L., E. Dehandschoewercker, and J. W. Bush. 2014. Violent expiratory events: on coughing and sneezing. J. Fluid Mech. 745:537–63. doi:10.1017/jfm.2014.88.
  • Coanda, H. 1936. Device for deflecting a stream of elastic fluid projected into an elastic fluid. US Patent 2:052,869.
  • Cole, E. C., and C. E. Cook. 1998. Characterization of infectious aerosols in health care facilities: an aid to effective engineering controls and preventive strategies. Am. J. Infect. Control. 26 (4):453–64.
  • Duguid, J. 1945. The numbers and the sites of origin of the droplets expelled during expiratory activities. Edinb. Med. J. 52 (11):385–401.
  • Duguid, J. 1946. The size and the duration of air-carriage of respiratory droplets and droplet-nuclei. Epidemiol. Infect. 44 (6):471–9. doi:10.1017/S0022172400019288.
  • Erath, B. D., and M. W. Plesniak. 2006a. An investigation of bimodal jet trajectory in flow through scaled models of the human vocal tract. Exp. Fluids 40 (5):683–96. doi:10.1007/s00348-006-0106-0.
  • Erath, B. D., and M. W. Plesniak. 2006b. An investigation of jet trajectory in flow through scaled vocal fold models with asymmetric glottal passages. Exp. Fluids. 41 (5):735–48. doi:10.1007/s00348-006-0196-8.
  • Erath, B. D., and M. W. Plesniak. 2006c. The occurrence of the Coanda effect in pulsatile flow through static models of the human vocal folds. J. Acoust. Soc. Am. 120 (2):1000–11.
  • Fu, C., M. Uddin, and A. Curley. 2016. Insights derived from CFD studies on the evolution of planar wall jets. Eng. Appl. Comput. Fluid Mech. 10 (1):44–56. doi:10.1080/19942060.2015.1082505.
  • Geoghegan, P. H., C. Spence, W. H. Ho, X. Lu, M. Jermy, P. Hunter, and J. Cater. 2012. Stereoscopic PIV measurement of airflow in human speech during pronunciation of fricatives. In 16th International Symposium of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 9–12 July.
  • Gralton, J., E. Tovey, M.-L. McLaws, and W. D. Rawlinson. 2011. The role of particle size in aerosolised pathogen transmission: a review. J. Infect. 62 (1):1–13.
  • Gupta, J. K., C.-H. Lin, and Q. Chen. 2010. Characterizing exhaled airflow from breathing and talking. Indoor Air. 20 (1):31–9.
  • Han, M., R. Ooka, H. Kikumoto, W. Oh, Y. Bu, and S. Hu. 2021. Experimental measurements of airflow features and velocity distribution exhaled from sneeze and speech using particle image velocimetry. Build. Environ. 205:108293.
  • Hinds, W. C. 1999. Aerosol technology: properties, behavior, and measurement of airborne particles. New York: John Wiley & Sons.
  • Isshiki, N., and R. Ringel. 1964. Air flow during the production of selected consonants. J. Speech Hear. Res. 7 (3):233–44.
  • Kwon, S.-B., J. Park, J. Jang, Y. Cho, D.-S. Park, C. Kim, G.-N. Bae, and A. Jang. 2012. Study on the initial velocity distribution of exhaled air from coughing and speaking. Chemosphere. 87 (11):1260–4. doi:10.1016/j.chemosphere.2012.01.032.
  • Lass, N. 2012. Contemporary issues in experimental phonetics. New York: Elsevier.
  • Lindsley, W. G., T. A. Pearce, J. B. Hudnall, K. A. Davis, S. M. Davis, M. A. Fisher, R. Khakoo, J. E. Palmer, K. E. Clark, I. Celik, et al. 2012. Quantity and size distribution of cough-generated aerosol particles produced by influenza patients during and after illness. J. Occup. Environ. Hyg. 9 (7):443–9. doi:10.1080/15459624.2012.684582.
  • Liu, F., H. Qian, Z. Luo, and X. Zheng. 2021. The impact of indoor thermal stratification on the dispersion of human speech droplets. Indoor Air. 31 (2):369–82. doi:10.1111/ina.12737.
  • Mofakham, A. A., B. T. Helenbrook, T. Ahmed, B. D. Erath, A. R. Ferro, D. M. Brown, and G. Ahmadi. 2021. Significance of vocal tract geometrical variations and loudness on airflow and droplet dispersion in a two-dimensional representation of [f]. In Fluids Engineering Division Summer Meeting, vol. 85307, V003T08A001. New York, NY: American Society of Mechanical Engineers. doi:10.1115/FEDSM2021-65485.
  • Morawska, L., G. Johnson, Z. Ristovski, M. Hargreaves, K. Mengersen, S. Corbett, C. Y. H. Chao, Y. Li, and D. Katoshevski. 2009. Size distribution and sites of origin of droplets expelled from the human respiratory tract during expiratory activities. J. Aerosol Sci. 40 (3):256–69. doi:10.1016/j.jaerosci.2008.11.002.
  • Morawska, L., J. W. Tang, W. Bahnfleth, P. M. Bluyssen, A. Boerstra, G. Buonanno, J. Cao, S. Dancer, A. Floto, F. Franchimon, et al. 2020. How can airborne transmission of COVID-19 indoors be minimised? Environ. Int. 142:105832. doi:10.1016/j.envint.2020.105832.
  • Narayanan, S. S., A. A. Alwan, and K. Haker. 1995. An articulatory study of fricative consonants using magnetic resonance imaging. J. Acoust. Soc. Am. 98 (3):1325–47. doi:10.1121/1.413469.
  • Narayanan, S., A. Toutios, V. Ramanarayanan, A. Lammert, J. Kim, S. Lee, K. Nayak, Y.-C. Kim, Y. Zhu, L. Goldstein, et al. 2014. Real-time magnetic resonance imaging and electromagnetic articulography database for speech production research (TC). J. Acoust. Soc. Am. 136 (3):1307–11. doi:10.1121/1.4890284.
  • Nicas, M., W. W. Nazaroff, and A. Hubbard. 2005. Toward understanding the risk of secondary airborne infection: emission of respirable pathogens. J. Occup. Environ. Hyg. 2 (3):143–54.
  • Oller, D. K. 1973. The effect of position in utterance on speech segment duration in English. J. Acoust. Soc. Am. 54 (5):1235–47. doi:10.1121/1.1914393.
  • Patankar, S. V. 2018. Numerical heat transfer and fluid flow. Boca Raton, FL: CRC Press.
  • Pont, A., O. Guasch, J. Baiges, R. Codina, and A. Van Hirtum. 2019. Computational aeroacoustics to identify sound sources in the generation of sibilant/s. Int. J. Numer. Method. Biomed. Eng. 35 (1):e3153.
  • Raffel, M., C. E. Willert, F. Scarano, C. J. Kähler, S. T. Wereley, and J. Kompenhans. 2018. Techniques for 3D-PIV. In Particle image velocimetry, 309–65. Cham, Switzerland: Springer.
  • Singhal, R., S. Ravichandran, R. Govindarajan, and S. S. Diwan. 2021. Virus transmission by aerosol transport during short conversations. arXiv Preprint arXiv:2103.16415
  • Somsen, G. A., C. van Rijn, S. Kooij, R. A. Bem, and D. Bonn. 2020. Small droplet aerosols in poorly ventilated spaces and SARS-CoV-2 transmission. Lancet. Respirator. Med. 8 (7):658–9.
  • Stadnytskyi, V., C. E. Bax, A. Bax, and P. Anfinrud. 2020. The airborne lifetime of small speech droplets and their potential importance in SARS-CoV-2 transmission. Proc. Natl. Acad. Sci. U S A. 117 (22):11875–7. doi:10.1073/pnas.2006874117.
  • Stevens, K. 1999. Acoustic phonetics, 1998.
  • Titze, I. R. 1984. Parameterization of the glottal area, glottal flow, and vocal fold contact area. J. Acoust. Soc. Am. 75 (2):570–80. doi:10.1121/1.390530.
  • Wells, W. F. 1934. On air-borne infection. study ii. droplets and droplet nuclei. Am. J. Hygien. 20:611–8.
  • WHO. 2020. Advice for the public.
  • Yang, F., A. A. Pahlavan, S. Mendez, M. Abkarian, and H. A. Stone. 2020. Towards improved social distancing guidelines: Space and time dependence of virus transmission from speech-driven aerosol transport between two individuals. Phys. Rev. Fluids 5 (12):122501. doi:10.1103/PhysRevFluids.5.122501.
  • Yoshinaga, T., K. Nozaki, and S. Wada. 2019a. Aeroacoustic analysis on individual characteristics in sibilant fricative production. J. Acoust. Soc. Am. 146 (2):1239–51. doi:10.1121/1.5122793.
  • Yoshinaga, T., K. Nozaki, and S. Wada. 2019b. A simplified vocal tract model for articulation of [s]: The effect of tongue tip elevation on [s]. PLoS One. 14 (10):e0223382. doi:10.1371/journal.pone.0223382.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.