886
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Influence of rapid laser heating on differently matured soot with double-pulse laser-induced incandescence

ORCID Icon, , ORCID Icon, & ORCID Icon
Pages 488-501 | Received 07 Oct 2021, Accepted 07 Feb 2022, Published online: 05 Apr 2022

References

  • Apicella, B., P. Pré, M. Alfè, A. Ciajolo, V. Gargiulo, C. Russo, A. Tregrossi, D. Deldique, and J. N. Rouzaud. 2015. Soot nanostructure evolution in premixed flames by High Resolution Electron Transmission Microscopy (HRTEM). Proc. Combust. Inst. 35 (2):1895–902. doi:10.1016/j.proci.2014.06.121.
  • Apicella, B., P. Pré, J. N. Rouzaud, J. Abrahamson, R. L. V. Wal, A. Ciajolo, A. Tregrossi, and C. Russo. 2019. Laser-induced structural modifications of differently aged soot investigated by HRTEM. Combust. Flame 204:13–22. doi:10.1016/j.combustflame.2019.02.026.
  • Bond, T. C., S. J. Doherty, D. W. Fahey, P. M. Forster, T. Berntsen, B. J. DeAngelo, M. G. Flanner, S. Ghan, B. Kärcher, D. Koch, et al. 2013. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos. 118 (11):5380–552. doi:10.1002/jgrd.50171.
  • Cenker, E., and W. L. Roberts. 2017. Quantitative effects of rapid heating on soot-particle sizing through analysis of two-pulse LII. Appl. Phys. B 123 (3):74. doi:10.1007/s00340-017-6653-7.
  • Cléon, G., T. Amodeo, A. Faccinetto, and P. Desgroux. 2011. Laser induced incandescence determination of the ratio of the soot absorption functions at 532 nm and 1064 nm in the nucleation zone of a low pressure premixed sooting flame. Appl. Phys. B 104 (2):297–305. doi:10.1007/s00340-011-4372-z.
  • De Iuliis, S., F. Migliorini, F. Cignoli, and G. Zizak. 2006. Peak soot temperature in laser-induced incandescence measurements. Appl. Phys. B 83 (3):397–402. doi:10.1007/s00340-006-2210-5.
  • Gao, R. S., J. P. Schwarz, K. K. Kelly, D. W. Fahey, L. A. Watts, T. L. Thompson, J. R. Spackman, J. G. Slowik, E. S. Cross, J.-H. Han, et al. 2007. A novel method for estimating light-scattering properties of soot aerosols using a modified single-particle soot photometer. Aerosol Sci. Technol. 41 (2):125–35. doi:10.1080/02786820601118398.
  • IPCC. 2013. Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA, Cambridge University Press.
  • Janssen, N. A. H., M. E. Gerlofs-Nijland, T. Lanki, R. O. Salonen, F. Cassee, G. Hoek, P. Fischer, B. Brunekreef, and M. Krzyzanowski. 2012. Health effects of black carbon. Copenhagen, Denmark: WHO.
  • Jing. 2009. "Mini-CAST soot generator." Accessed October, 2019. http://www.sootgenerator.com/.
  • Johansson, K. O., F. E. Gabaly, P. E. Schrader, M. F. Campbell, and H. A. Michelsen. 2017. Evolution of maturity levels of the particle surface and bulk during soot growth and oxidation in a flame. Aerosol Sci. Technol. 51 (12):1333–44. doi:10.1080/02786826.2017.1355047.
  • Karlsson, A., S. Török, A. Roth, and P.-E. Bengtsson. 2022. Numerical scattering simulations for estimating soot aggregate morphology from nephelometer scattering measurements. J. Aerosol Sci. 159:105828. doi:10.1016/j.jaerosci.2021.105828.
  • Le, K. C., T. Pino, V. T. Pham, J. Henriksson, S. Tӧrӧk, and P.-E. Bengtsson. 2019. Raman spectroscopy of mini-CAST soot with various fractions of organic compounds: Structural characterization during heating treatment from 25 °C to 1000 °C. Combust. Flame 209:291–302. doi:10.1016/j.combustflame.2019.07.037.
  • Liu, F., B. J. Stagg, D. R. Snelling, and G. J. Smallwood. 2006. Effects of primary soot particle size distribution on the temperature of soot particles heated by a nanosecond pulsed laser in an atmospheric laminar diffusion flame. Int. J. Heat Mass Transf. 49 (3–4):777–88. doi:10.1016/j.ijheatmasstransfer.2005.07.041.
  • López-Yglesias, X., P. E. Schrader, and H. A. Michelsen. 2014. Soot maturity and absorption cross sections. J. Aerosol Sci. 75:43–64. doi:10.1016/j.jaerosci.2014.04.011.
  • Malmborg, V. B., A. C. Eriksson, S. Török, Y. Zhang, K. Kling, J. Martinsson, E. C. Fortner, L. Gren, S. Kook, T. B. Onasch, et al. 2019. Relating aerosol mass spectra to composition and nanostructure of soot particles. Carbon 142:535–46. doi:10.1016/j.carbon.2018.10.072.
  • Mansmann, R., T. Dreier, and C. Schulz. 2017. Performance of photomultipliers in the context of laser-induced incandescence. Appl. Opt. 56 (28):7849–60. doi:10.1364/AO.56.007849.
  • Michelsen, H. A. 2017. Probing soot formation, chemical and physical evolution, and oxidation: A review of in situ diagnostic techniques and needs. Proc. Combust. Inst. 36 (1):717–35. doi:10.1016/j.proci.2016.08.027.
  • Michelsen, H. A., M. B. Colket, P.-E. Bengtsson, A. D’Anna, P. Desgroux, B. S. Haynes, J. H. Miller, G. J. Nathan, H. Pitsch, and H. Wang. 2020. A Review of terminology used to describe soot formation and evolution under combustion and pyrolytic conditions. ACS Nano. 14 (10):12470–90. doi:10.1021/acsnano.0c06226.
  • Michelsen, H. A., C. Schulz, G. J. Smallwood, and S. Will. 2015. Laser-induced incandescence: Particulate diagnostics for combustion, atmospheric, and industrial applications. Prog. Energy Combust. Sci. 51:2–48. doi:10.1016/j.pecs.2015.07.001.
  • Michelsen, H. A., A. V. Tivanski, M. K. Gilles, L. H. van Poppel, M. A. Dansson, and P. R. Buseck. 2007. Particle formation from pulsed laser irradiation of soot aggregates studied with a scanning mobility particle sizer, a transmission electron microscope, and a scanning transmission X-ray microscope. Appl. Opt. 46 (6):959–77. doi:10.1364/ao.46.000959.
  • Migliorini, F., S. De Iuliis, R. Dondè, M. Commodo, P. Minutolo, and A. D'Anna. 2020. Nanosecond laser irradiation of soot particles: Insights on structure and optical properties. Exp. Therm. Fluid Sci. 114:110064. doi:10.1016/j.expthermflusci.2020.110064.
  • Musikhin, S. M. R., G. J. Smallwood, T. Dreier, K. J. Daun, and C. Schulz. 2019. Spectrally and temporally resolved LII interference emission in a laminar diffusion flame. Proceedings of Combustion Institute—Canadian Section.
  • Olofsson, N.-E., J. Simonsson, S. Török, H. Bladh, and P.-E. Bengtsson. 2015. Evolution of properties for aging soot in premixed flat flames studied by laser-induced incandescence and elastic light scattering. Appl. Phys. B 119 (4):669–83. doi:10.1007/s00340-015-6067-3.
  • Simonsson, J., N.-E. Olofsson, S. Török, P.-E. Bengtsson, and H. Bladh. 2015. Wavelength dependence of extinction in sooting flat premixed flames in the visible and near-infrared regimes. Appl. Phys. B 119 (4):657–67. doi:10.1007/s00340-015-6079-z.
  • Sipkens, T., and K. Daun. 2017. Defining regimes and analytical expressions for fluence curves in pulsed laser heating of aerosolized nanoparticles. Opt. Express. 25 (5):5684–96. doi:10.1364/OE.25.005684.
  • Therssen, E., Y. Bouvier, C. Schoemaecker-Moreau, X. Mercier, P. Desgroux, M. Ziskind, and C. Focsa. 2007. Determination of the ratio of soot refractive index function E(m) at the two wavelengths 532 and 1064 nm by laser induced incandescence. Appl. Phys. B 89 (2-3):417–27. doi:10.1007/s00340-007-2759-7.
  • Török, S., V. B. Malmborg, J. Simonsson, A. Eriksson, J. Martinsson, M. Mannazhi, J. Pagels, and P.-E. Bengtsson. 2018. Investigation of the absorption Ångström exponent and its relation to physicochemical properties for mini-CAST soot. Aerosol Sci. Technol. 52 (7):757–67. doi:10.1080/02786826.2018.1457767.
  • Török, S., M. Mannazhi, and P.-E. Bengtsson. 2021. Laser-induced incandescence (2λ and 2C) for estimating absorption efficiency of differently matured soot. Appl. Phys. B 127 (7):96. doi:10.1007/s00340-021-07638-1.
  • Vander Wal, R. L., and M. Y. Choi. 1999. Pulsed laser heating of soot: Morphological changes. Carbon 37 (2):231–9. doi:10.1016/S0008-6223(98)00169-9.
  • Vander Wal, R. L., T. M. Ticich, and A. B. Stephens. 1998. Optical and microscopy investigations of soot structure alterations by laser-induced incandescence. Appl. Phys. B 67 (1):115–23. doi:10.1007/s003400050483.
  • Wan, K., X. Shi, and H. Wang. 2020. Quantum confinement and size resolved modeling of electronic and optical properties of small soot particles. Proceedings of the Combustion Institute. doi:10.1016/j.proci.2020.07.145.
  • Witze, P. O., S. Hochgreb, D. Kayes, H. A. Michelsen, and C. R. Shaddix. 2001. Time-resolved laser-induced incandescence and laser elastic-scattering measurements in a propane diffusion flame. Appl. Opt. 40 (15):2443–52. doi:10.1364/ao.40.002443.