598
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Quantitative detection of aerial suspension of particles with a full-frame visual camera for atmospheric wind tunnel studies

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 530-544 | Received 26 Jul 2021, Accepted 22 Feb 2022, Published online: 16 Mar 2022

References

  • Allen, S., D. Allen, V. R. Phoenix, G. L. Roux, P. D. Jiménez, A. Simonneau, S. Binet, and D. Galop. 2019. Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nat. Geosci. 12 (5):339–44. doi:10.1038/s41561-019-0335-5.
  • Bergmann, M., S. Mützel, S. Primpke, M. B. Tekman, J. Trachsel, and G. Gerdts. 2019. White and wonderful? Microplastics prevail in snow from the Alps to the Arctic. Sci. Adv. 5 (8):eaax1157. doi:10.1126/sciadv.aax1157.
  • Bezanson, J., A. Edelman, S. Karpinski, and V. B. Shah. 2017. Julia: A fresh approach to numerical computing. SIAM Rev. 59 (1):65–98. doi:10.1137/141000671.
  • Brahney, J., M. Hallerud, E. Heim, M. Hahnenberger, and S. Sukumaran. 2020. Plastic rain in protected areas of the United States. Science 368 (6496):1257–60. doi:10.1126/science.aaz5819.
  • Brahney, J., N. Mahowald, M. Prank, G. Cornwell, Z. Klimont, H. Matsui, and K. A. Prather. 2021. Constraining the atmospheric limb of the plastic cycle. PNAS 118 (16):e2020719118. doi:10.1073/pnas.2020719118.
  • Bullard, J. E., A. Ockelford, P. O’Brien, and C. McKenna Neuman. 2021. Preferential transport of microplastics by wind. Atmos. Environ. 245:118038. doi:10.1016/j.atmosenv.2020.118038.
  • Can-Güven, E. 2021. Microplastics as emerging atmospheric pollutants: a review and bibliometric analysis. Air Qual. Atmos. Health 14 (2):203–15. doi:10.1007/s11869-020-00926-3.
  • Dris, R., J. Gasperi, V. Rocher, M. Saad, N. Renault, B. Tassin, R. Dris, J. Gasperi, V. Rocher, M. Saad, et al. 2015. Microplastic contamination in an urban area: a case study in Greater Paris. Environ. Chem. 12 (5):592–9. doi:10.1071/EN14167.
  • Esders, E. M., and C. K. Thomas. 2021, July 13. Particle detection software “mp.flux” used for the publication “Quantitative detection of microplastics with a full-frame visual camera for atmospheric wind tunnel studies” (Version 0.8). Zenodo. doi:http://doi.org/10.5281/zenodo.5094798.
  • Environment, U.N. 2020. Marine plastic debris and microplastics: global lessons and research to inspire action and guide policy change UNEP - UN Environ. Programme. Accessed July 12 2021. http://www.unep.org/resources/publication/marine-plastic-debris-and-microplastics-global-lessons-and-research-inspire.
  • Goudie, A. S., and N. J. Middleton. 2006. Desert dust in the global system, 193–199. Heidelberg: Springer.
  • Graham, W. F., and A. D. Duce. 1979. Atmospheric pathways of the phospherus cycle. Geochim. Cosmochim. Acta 43 (8):1195–208. doi:10.1016/0016-7037(79)90112-1.
  • Griffin, D. W., C. A. Kellogg, and E. A. Shinn. 2001. Dust in the wind: long range transport of dust in the atmosphere and its implications for global public and ecosystem health. Glob. Chang. Hum. Health 2 (1):20–33. doi:10.1023/A:1011910224374.
  • Ibrahim, A. H., P. F. Dunn, and R. M. Brach. 2004. Microparticle detachment from surfaces exposed to turbulent air flow: effects of flow and particle deposition characteristics. J. Aerosol Sci. 35 (7):805–21. doi:10.1016/j.jaerosci.2004.01.002.
  • Jurcik, B., and H.-C. Wang. 1991. The modelling of particle resuspension in turbulent flow. J. Aerosol Sci. 22:S149–S152. doi:10.1016/S0021-8502(05)80056-4.
  • Katija, K.,. C. A. Choy, R. E. Sherlock, A. D. Sherman, and B. H. Robison. 2017. From the surface to the seafloor: how giant larvaceans transport microplastics into the deep sea. Sci. Adv. 3 (8):e1700715. doi:10.1126/sciadv.1700715.
  • Kim, Y., G. Wellum, K. Mello, K. E. Strawhecker, R. Thoms, A. Giaya, and B. E. Wyslouzil. 2016. Effects of relative humidity and particle and surface properties on particle resuspension rates. Aerosol Sci. Technol. 50 (4):339–52. doi:10.1080/02786826.2016.1152350.
  • Klein, M., and E. K. Fischer. 2019. Microplastic abundance in atmospheric deposition within the Metropolitan area of Hamburg, Germany. Sci. Total Environ. 685:96–103. doi:10.1016/j.scitotenv.2019.05.405.
  • Krauter, P., and A. Biermann. 2007. Reaerosolization of fluidized spores in ventilation systems. Appl. Environ. Microbiol. 73 (7):2165–72. doi:10.1128/AEM.02289-06.
  • Levermore, J. M., T. E. L. Smith, F. J. Kelly, and S. L. Wright. 2020. Detection of microplastics in ambient particulate matter using Raman spectral imaging and chemometric analysis. Anal. Chem. 92 (13):8732–40. doi:10.1021/acs.analchem.9b05445.
  • Loosmore, G. A. 2003. Evaluation and development of models for resuspension of aerosols at short times after deposition. Atmos. Environ. 37 (5):639–47. doi:10.1016/S1352-2310(02)00902-0.
  • Mbachu, O., G. Jenkins, C. Pratt, and P. Kaparaju. 2020. A new contaminant superhighway? A review of sources, measurement techniques and fate of atmospheric microplastics. Water Air Soil Pollut. 231 (2):85. doi:10.1007/s11270-020-4459-4.
  • Nicholson, K. W. 1988. A review of particle resuspension. Atmos. Environ 22 (12):2639–51. doi:10.1016/0004-6981(88)90433-7.
  • Nicholson, K. W. 1993. Wind tunnel experiments on the resuspension of particulate material. Atmos. Environ 27 (2):181–8. doi:10.1016/0960-1686(93)90349-4.
  • Orgill, M. M., G. A. Sehmel, and M. R. Petersen. 1976. Some initial measurements of airborne DDT over Pacific North-west forests. Atmos. Environ. 10 (10):827–34. doi:10.1016/0004-6981(76)90137-2.
  • Prata, J. C., J. L. Castro, J. P. da Costa, A. C. Duarte, T. Rocha-Santos, and M. Cerqueira. 2020. The importance of contamination control in airborne fibers and microplastic sampling: experiences from indoor and outdoor air sampling in Aveiro, Portugal. Mar. Pollut. Bull. 159:111522. doi:10.1016/j.marpolbul.2020.111522.
  • Rahman, L., G. Mallach, R. Kulka, and S. Halappanavar. 2021. Microplastics and nanoplastics science: collecting and characterizing airborne microplastics in fine particulate matter. Nanotoxicology 15 (9):1253–78. doi:10.1080/17435390.2021.2018065.
  • Reeks, M. W., and D. Hall. 2001. Kinetic models for particle resuspension in turbulent flows: theory and measurement. J. Aerosol Sci. 32 (1):1–31. doi:10.1016/S0021-8502(00)00063-X.
  • Rezaei, M., M. J. P. M. Riksen, E. Sirjani, A. Sameni, and V. Geissen. 2019. Wind erosion as a driver for transport of light density microplastics. Sci. Total Environ. 669:273–81. doi:10.1016/j.scitotenv.2019.02.382.
  • Ritchie, H., and M. Roser. 2018. Plastic Pollution. Our World Data.
  • SAPEA. 2019. A Scientific Perspective on Microplastics in Nature and Society. SAPEA, DE.
  • Savoie, D. L., and J. M. Prospero. 1980. Water-soluble potassium, calcium, and magnesium in the aerosols over the Tropical North Atlantic. J. Geophys. Res. 85 (C1):385–92. doi:10.1029/JC085iC01p00385.
  • Soltani, M., and G. Ahmadi. 1994. On particle adhesion and removal mechanisms in turbulent flows. J. Adhes. Sci. Technol 8 (7):763–85. doi:10.1163/156856194X00799.
  • Stefánsson, H., M. Peternell, M. Konrad-Schmolke, H. Hannesdóttir, E. J. Ásbjörnsson, and E. Sturkell. 2021. Microplastics in glaciers: first results from the Vatnajökull ice cap. Sustainability 13 (8):4183. doi:10.3390/su13084183.
  • Thomas, C. K., B. E. Law, J. Irvine, J. G. Martin, J. C. Pettijohn, and K. J. Davis. 2009. Seasonal hydrology explains interannual and seasonal variation in carbon and water exchange in a semiarid mature ponderosa pine forest in central Oregon. J. Geophys. Res. 114 (G4):G04006. doi:10.1029/2009JG001010.
  • Vianello, A., R. L. Jensen, L. Liu, and J. Vollertsen. 2019. Simulating human exposure to indoor airborne microplastics using a Breathing Thermal Manikin. Sci. Rep. 9 (1):8670. doi:10.1038/s41598-019-45054-w.
  • Wang, H. C. 1991. Reducing uncertainties in particle adhesion and removal measurements. In: Particles on surfaces 3, ed. K.L. Mittal. Boston, MA: Springer. doi:10.1007/978-1-4899-2367-7_15.
  • Weis, C. P., A. J. Intrepido, A. K. Miller, P. G. Cowin, M. A. Durno, J. S. Gebhardt, and R. Bull. 2002. Secondary aerosolization of viable Bacillus anthracis spores in a contaminated US Senate Office. JAMA 288 (22):2853–8. doi:10.1001/jama.288.22.2853.
  • Wen, H. Y., and G. Kasper. 1989. On the kinetics of particle reentrainment from surfaces. J. Aerosol Sci .20 (4):483–98. doi:10.1016/0021-8502(89)90082-7.
  • Wu, Y.-L., C. I. Davidson, and A. G. Russell. 1992. Controlled wind tunnel experiments for particle bounceoff and resuspension. Aerosol Sci. Technol. 17 (4):245–62. doi:10.1080/02786829208959574.
  • Zhang, Y., S. Kang, S. Allen, D. Allen, T. Gao, and M. Sillanpää. 2020. Atmospheric microplastics: a review on current status and perspectives. Earth Sci. Rev. 203:103118. doi:10.1016/j.earscirev.2020.103118.
  • Zimon, A. D. 1982. Adhesion of dust and powder. Boston, MA: Springer US.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.