464
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Evaluating the solution of nucleation and condensational growth by a sectional moving grid – remapping method

&
Pages 545-563 | Received 22 Oct 2021, Accepted 22 Feb 2022, Published online: 28 Mar 2022

References

  • Abarham, M., P. Zamankhan, J. W. Hoard, D. Styles, C. Scott Sluder, J. M. E. Storey, M. J. Lance, and D. Assanis. 2013. CFD analysis of particle transport in axi-symmetric tube flows under the influence of thermophoretic force. Int. J. Heat Mass Transf. 61 (1):94–105. doi: 10.1016/j.ijheatmasstransfer.2013.01.071.
  • Alopaeus, V., M. Laakkonen, and J. Aittamaa. 2006. Numerical solution of moment-transformed population balance equation with fixed quadrature points. Chem. Eng. Sci. 61 (15):4919–29. doi: 10.1016/j.ces.2006.03.028.
  • Ansys, Inc. 2019. Ansys FLUENT 19.2. Theory Guide. Canonsburg, PA: Ansys, Inc.
  • Bouaniche, A., L. Vervisch, and P. Domingo. 2019. A hybrid stochastic/fixed-sectional method for solving the population balance equation. Chem. Eng. Sci. 209:115198. doi: 10.1016/j.ces.2019.115198.
  • Bouaniche, A., J. Yon, P. Domingo, and L. Vervisch. 2020. Analysis of the soot particle size distribution in a laminar premixed flame: A hybrid stochastic/fixed‑sectional approach. Flow Turbulence Combust. 104 (2–3):753–75. doi: 10.1007/s10494-019-00103-2.
  • Brown, D. P., E. I. Kauppinen, J. K. Jokiniemi, S. G. Rubin, and P. Biswas. 2006. A method of moments based CFD model for polydisperse aerosol flows with strong interphase mass and heat transfer. Comput. Fluids 35 (7):762–80. doi: 10.1016/j.compfluid.2006.01.012.
  • di Veroli, G. Y., and S. Rigopoulos. 2011. Modeling of aerosol formation in a turbulent jet with the transported population balance equation-probability density function approach. Phys. Fluids 23 (4):043305. doi: 10.1063/1.3576913.
  • Drossinos, Y., and N. I. Stilianakis. 2020. What aerosol physics tells us about airborne pathogen transmission. Aerosol Sci. Technol. 54 (6):639–43. doi: 10.1080/02786826.2020.1751055.
  • Frederix, E. M. A., A. K. Kuczaj, M. Nordlund, A. E. P. Veldman, and B. J. Geurts. 2017. Application of the characteristics-based sectional method to spatially varying aerosol formation and transport. J. Aerosol Sci. 104:123–40. doi: 10.1016/j.jaerosci.2016.10.008.
  • Frenkel, J. 1955. Kinetic theory of liquids. New York: Dover Publications.
  • Friedlander, S. K. 2000. Smoke, dust, and haze – Fundamentals of aerosol dynamics. 2nd ed. New York: Oxford University Press.
  • Garcia, M., L. E. Herranz, and M. P. Kissane. 2016. Theoretical assessment of particle generation from sodium pool fires. Nucl. Eng. Des. 310:470–83. doi: 10.1016/j.nucengdes.2016.10.024.
  • Gelbard, F., Y. Tambour, and J. H. Seinfeld. 1980. Sectional representations for simulating aerosol dynamics. J. Colloid Interface Sci. 76 (2):541–56. doi: 10.1016/0021-9797(80)90394-X.
  • Girshick, S. L., and C. P. Chiu. 1990. Kinetic nucleation theory: A new expression for the rate of homogeneous nucleation from an ideal supersaturated vapor. J. Chem. Phys. 93 (2):1273–7. doi: 10.1063/1.459191.
  • Gunawan, R., I. Fusman, and R. D. Braatz. 2004. High resolution algorithms for multidimensional population balance equations. AIChE J. 50 (11):2738–49. doi: 10.1002/aic.10228.
  • Herranz, L. E., M. Garcia, M. P. Kissane, and C. Spengler. 2018. A lumped parameter modelling of particle generation from Na-pool fires in SFR containments. Prog. Nucl. Energy 109:223–32. doi: 10.1016/j.pnucene.2018.08.015.
  • Hinds, W. C. 2012. Aerosol technology: Properties, behavior, and measurement of airborne particles. 2nd ed. New York: John Wiley & Sons.
  • Hounslow, M. J., R. L. Ryall, and V. R. Marshall. 1988. A discretized population balance for nucleation, growth, and aggregation. AIChE J. 34 (11):1821–32. doi: 10.1002/aic.690341108.
  • Jacobson, M. Z. 1997. Development and application of a new air pollution modelling system-II. aerosol module structure and design. Atmos. Environ. 31 (2):131–44. doi: 10.1016/1352-2310(96)00202-6.
  • Jokiniemi, J. K., M. Lazaridis, K. E. J. Lehtinen, and E. I. Kauppinen. 1994. Numerical simulation of vapor-aerosol dynamics in combustion processes. J. Aerosol Sci. 25 (3):429–46. doi: 10.1016/0021-8502(94)90062-0.
  • Kim, Y. P., and J. H. Seinfeld. 1990. Simulation of multicomponent aerosol condensation by the moving sectional method. J. Colloid Interface Sci. 135 (1):185–99. doi: 10.1016/0021-9797(90)90299-4.
  • Kissane, M. P., D. Mitrakos, C. Housiadas, and J. C. Sabroux. 2009. Investigation of thermo-catalytic decomposition of metal-iodide aerosols due to passage through hydrogen recombiners. Nucl. Eng. Des. 239 (12):3003–13. doi: 10.1016/j.nucengdes.2009.08.001.
  • Kumar, S., and D. Ramkrishna. 1996a. On the solution of population balance equations by discretization –I. A fixed pivot technique. Chem. Eng. Sci. 51 (8):1311–32. doi: 10.1016/0009-2509(96)88489-2.
  • Kumar, S., and D. Ramkrishna. 1996b. On the solution of population balance equations by discretization – II. A moving pivot technique. Chem. Eng. Sci. 51 (8):1333–42. doi: 10.1016/0009-2509(95)00355-X.
  • Kumar, S., and D. Ramkrishna. 1997. On the solution of population balance equations by discretization – III. Nucleation, growth and aggregation of particles. Chem. Eng. Sci. 52 (24):4659–79. [Database] doi: 10.1016/S0009-2509(97)00307-2.
  • Lee, J., K. S. Ha, and J. Hwang. 2017. Application of moment method for predicting condensational growth of nuclear aerosols in a severe accident. Nucl. Technol. 200 (3):241–9. doi: 10.1080/00295450.2017.1372984.
  • Lee, Y., Y. J. Cho, and K. Lim. 2019. Coupling scheme of multicomponent sectional equations and Mason equations via transition rate matrix of hygroscopic growth applied to international standard problem No. 44. Ann. Nucl. Energy 127:437–49. doi: 10.1016/j.anucene.2018.12.028.
  • Liu, A., and S. Rigopoulos. 2019. A conservative method for numerical solution of the population balance equation, and application to soot formation. Combust. Flame 205:506–21. doi: 10.1016/j.combustflame.2019.04.019.
  • Lurmann, F. W., A. S. Wexler, S. N. Pandis, S. Musarra, N. Kumar, and J. H. Seinfeld. 1997. Modelling urban and regional aerosols-II. Application to California’s south coast air basin. Atmos. Environ. 31 (17):2695–715. doi: 10.1016/S1352-2310(97)00100-3.
  • Mahrukh, M., A. Kumar, S. Gu, and S. Kamnis. 2016. Computational development of a novel aerosol synthesis technique for production of dense and nanostructured zirconia coating. Ind. Eng. Chem. Res. 55 (28):7679–95. doi: 10.1021/acs.iecr.6b01725.
  • Marchisio, D. L., and R. O. Fox. 2005. Solution of population balance equations using the direct quadrature method of moments. J. Aerosol Sci. 36 (1):43–73. doi: 10.1016/j.jaerosci.2004.07.009.
  • Marchisio, D. L., R. D. Vigil, and R. O. Fox. 2003. Implementation of the quadrature method of moments in CFD codes for aggregation – Breakage problems. Chem. Eng. Sci. 58 (15):3337–51. doi: 10.1016/S0009-2509(03)00211-2.
  • Mason, B. J. 1971. The Physics of Clouds. Oxford: Clarendon Press.
  • McGraw, R. 1997. Description of aerosol dynamics by the quadrature method of moments. Aerosol Sci. Technol. 27 (2):255–65. doi: 10.1080/02786829708965471.
  • McGraw, R., and D. L. Wright. 2003. Chemically resolved aerosol dynamics for internal mixtures by the quadrature method of moments. Aerosol Sci. 34 (2):189–209. doi: 10.1016/S0021-8502(02)00157-X.
  • Mitrakos, D., J. Jokiniemi, U. Backman, and C. Housiadas. 2008. Aerosol flow in a tube furnace reactor of gas-phase synthesised silver nanoparticles. J. Nanopart. Res. 10 (S1):153–61. doi: 10.1007/s11051-008-9439-3.
  • Mitrakos, D., E. Hinis, and C. Housiadas. 2007. Sectional modeling of aerosol dynamics in multi-dimensional flows. Aerosol Sci. Technol. 41 (12):1076–88. doi: 10.1080/02786820701697804.
  • Mitsakou, C., C. Helmis, and C. Housiadas. 2004. Extrathoracic and thoracic deposition of inhaled hygroscopic particles. J. Aerosol. Sci. 35 (S2):S1127–S1128. doi: 10.1016/s0021-8502(19)30296-4.
  • Mohs, A. J., and F. M. Bowman. 2011. Eliminating numerical artifacts when presenting moving center sectional aerosol size distributions. Aerosol Air Qual. Res. 11 (1):21–30. doi: 10.4209/aaqr.2010.06.0046.
  • Netz, R. 2020. Mechanisms of airborne infection via evaporating and sedimenting droplets produced by speaking. J. Phys. Chem. B. 124 (33):7093–101. doi: 10.1021/acs.jpcb.0c05229.
  • Park, S. H., and S. N. Rogak. 2004. A novel fixed-sectional model for the formation and growth of aerosol agglomerates. J. Aerosol Sci. 35 (11):1385–404. doi: 10.1016/j.jaerosci.2004.05.010.
  • Pilou, M., V. Antonopoulos, E. Makris, P. Neofytou, S. Tsangaris, and C. Housiadas. 2013. A fully Eulerian approach to particle inertial deposition in a physiologically realistic bifurcation. Appl. Math. Modell. 37 (8):5591–605. doi: 10.1016/j.apm.2012.10.055.
  • Pratsinis, S. E. 1988. Simultaneous nucleation, condensation, and coagulation in aerosol reactors. J. Colloid Interface Sci. 124 (2):416–27. doi: 10.1016/0021-9797(88)90180-4.
  • Pyykönen, J., J. Enriquez, D. Brown, and J. K. Jokiniemi. 2002. Exploring the limits of the sectional approach in the CFD based simulation of aerosol dynamics. In 6th International Aerosol Conference, International Aerosol Research Assembly, 569–570.
  • Pyykönen, J., and J. Jokiniemi. 2000. Computational fluid dynamics based sectional aerosol modelling schemes. J. Aerosol Sci. 31 (5):531–50. doi: 10.1016/S0021-8502(99)00546-7.
  • Qamar, S., M. P. Elsner, I. A. Angelov, G. Warnecke, and A. Seidel-Morgenstern. 2006. A comparative study of high resolution schemes for solving population balances in crystallization. Comput. Chem. Eng. 30 (6–7):1119–31. doi: 10.1016/j.compchemeng.2006.02.012.
  • Qamar, S., A. Ashfaq, G. Warnecke, I. Angelov, M. P. Elsner, and A. Seidel-Morgenster. 2007. Adaptive high-resolution schemes for multidimensional population balances in crystallization processes. Comput. Chem. Eng. 31 (10):1296–311. doi: 10.1016/j.compchemeng.2006.10.014.
  • Ramkrishna, D. 2000. Population balances: Theory and applications to particulate systems in engineering. Cambridge, MA: Academic Press.
  • Roussos, A. I., A. H. Alexopoulos, and C. Kiparissides. 2006. Dynamic evolution of PSD in continuous flow processes: A comparative study of fixed and moving grid numerical techniques. Chem. Eng. Sci. 61 (1):124–34. doi: 10.1016/j.ces.2004.12.056.
  • Rosner, D. E., and J. Pyykonen. 2002. Bivariate moment simulation of coagulating and sintering nanoparticles in flames. AIChE J. 48 (3):476–91. doi: 10.1002/aic.690480307.
  • Schwade, B., and P. Roth. 2003. Simulation of nano-particle formation in a wall-heated aerosol reactor including coalescence. J. Aerosol Sci. 34 (3):339–57. doi: 10.1016/S0021-8502(02)00186-6.
  • Seigneur, C., A. B. Hudischewskyj, J. H. Seinfeld, K. T. Whitby, E. R. Whitby, J. R. Brock, and H. M. Barnes. 1986. Simulation of aerosol dynamics: A comparative review of mathematical models. Aerosol Sci. Technol. 5 (2):205–22. doi: 10.1080/02786828608959088.
  • Seinfeld, J. H., and S. N. Pandis. 2006. Atmospheric chemistry and physics: From air pollution to climate change. 2nd ed. New Jersey: Wiley-Interscience.
  • Sewerin, F., and S. Rigopoulos. 2017a. An LES-PBE-PDF approach for modeling particle formation in turbulent reacting flows. Phys. Fluids 29 (10):105105. doi: 10.1063/1.5001343.
  • Sewerin, F., and S. Rigopoulos. 2017b. An explicit adaptive grid approach for the numerical solution of the population balance equation. Chem. Eng. Sci. 168:250–70. doi: 10.1016/j.ces.2017.01.054.
  • Shiea, M., A. Buffo, M. Vanni, and D. Marchisio. 2020. Numerical methods for the solution of population balance equations coupled with computational fluid dynamics. Annu. Rev. Chem. Biomol. Eng. 11 (1):339–66. doi: 10.1146/annurev-chembioeng.
  • Singh, S.,. P. J. Adams, A. Misquitta, K. J. Lee, E. M. Lipsky, and A. L. Robinson. 2014. Computational analysis of particle nucleation in dilution tunnels: Effects of flow configuration and tunnel geometry. Aerosol Sci. Technol. 48 (6):638–48. doi: 10.1080/02786826.2014.910291.
  • Stratmann, F., and E. R. Whitby. 1989. Numerical solution of aerosol dynamics for simultaneous convection, diffusion and external forces. J. Aerosol Sci. 20 (4):437–40. doi: 10.1016/0021-8502(89)90077-3.
  • Tang, H., and T. Tang. 2003. Adaptive mesh methods for one- and two-dimensional hyperbolic conservation laws. SIAM J. Numer. Anal. 41 (2):487–515. doi: 10.1137/S003614290138437X.
  • Tang, T. 2005. Moving mesh methods for computational fluid dynamics. In Contemporary mathematics, 383. Proceedings of the International Conference on Recent Advances in Adaptive Computation, May 24–28, 2004, Zhejiang University, Hangzhou, China. Rhode Island: American Mathematical Society.
  • Wilck, M., and F. Stratmann. 1997. A 2-D multicomponent modal aerosol model and its application to laminar flow reactors. J. Aerosol Sci. 28 (6):959–72. doi: 10.1016/S0021-8502(96)00481-8.
  • Woo, M., R. T. Nishida, M. A. Schriefl, M. E. J. Stettler, and A. M. Boies. 2021. Open-source modelling of aerosol dynamics and computational fluid dynamics: nodal method for nucleation, coagulation, and surface growth. Comput. Phys. Commun. 261:107765. doi: 10.17632/3s368jpdx2.1.
  • Yamamoto, M. 2004. A solver for aerosol condensation equation by semi-Lagrangian scheme with correction exactly conserving total particle number. Aerosol Sci. Technol. 38 (10):1033–43. doi: 10.1080/027868290524025.
  • Yamamoto, M. 2012. Numerical error analysis of solvers using cumulative number distribution with volume-ratio grid spacing in initially particle-free nucleation-condensation systems. Aerosol Air Qual. Res. 12 (6):1125–34. doi: 10.4209/aaqr.2012.02.0042.
  • Zhang, Y., C. Seigneur, J. H. Seinfeld, M. Z. Jacobson, and F. S. Binkowski. 1999. Simulation of aerosol dynamics: A comparative review of algorithms used in air quality models. Aerosol Sci. Technol. 31 (6):487–514. doi: 10.1080/027868299304039.
  • Zhao, B., C. Chen, and Z. Tan. 2009. Modeling of ultrafine particle dispersion in indoor environments with an improved drift flux model. J. Aerosol Sci. 40 (1):29–43. doi: 10.1016/j.jaerosci.2008.09.001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.